PHYSICALLY ACCEPTABLE SOLUTION OF EINSTEINS EQUATION FOR MANY-BODY SYSTEM

被引:54
|
作者
OHTA, T
OKAMURA, H
KIMURA, T
HIIDA, K
机构
[1] SEIKEI UNIV,COLL TECHNOL,DEPT MATH PHYS,MUSASHINO,TOKYO,JAPAN
[2] UNIV TOKYO,DEPT PHYS,TOKYO,JAPAN
[3] KOGAKUIN UNIV,FAC GEN EDUC,DEPT PHYS,HACHIOJI,JAPAN
[4] HIROSHIMA UNIV,RES INST THEORET PHYS,TAKEHARA,HIROSHIMA,JAPAN
[5] UNIV TOKYO,INST NUCL STUDY,TANASHI,TOKYO,JAPAN
来源
PROGRESS OF THEORETICAL PHYSICS | 1973年 / 50卷 / 02期
关键词
D O I
10.1143/PTP.50.492
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:492 / 514
页数:23
相关论文
共 50 条
  • [1] SOLUTION OF MANY-BODY SCATTERING PROBLEMS BY FREDHOLM EQUATION
    SWAN, P
    PHYSICAL REVIEW, 1954, 96 (04): : 1144 - 1144
  • [2] MANY-BODY INTERACTIONS IN PHYSICALLY ADSORBED MONOLAYERS
    DELANAYE, F
    SCHMEITS, M
    LUCAS, AA
    SOLID STATE COMMUNICATIONS, 1978, 26 (12) : 907 - 909
  • [3] ON THE GENERALIZED LANGEVIN EQUATION APPROACH TO A QUANTUM MANY-BODY SYSTEM
    UEYAMA, H
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1990, 59 (03) : 1025 - 1028
  • [4] Physically interpretable approximations of many-body spectral functions
    Goswami, Shubhang
    Barros, Kipton
    Carbone, Matthew R.
    PHYSICAL REVIEW E, 2024, 109 (01)
  • [5] SOLUTION OF THE NUCLEAR MANY-BODY PROBLEM
    BRUECKNER, KA
    GAMMEL, JL
    PHYSICAL REVIEW, 1957, 105 (05): : 1679 - 1681
  • [6] ON THE DECAY OF MANY-BODY SYSTEM
    VAGRADOV, GM
    SHLOMO, S
    PHYSICA SCRIPTA, 1995, 51 (02) : 159 - 163
  • [7] CLUSTER FORMULATION OF EXACT EQUATION FOR EVOLUTION OF A CLASSICAL MANY-BODY SYSTEM
    WEINSTOCK, J
    PHYSICAL REVIEW, 1963, 132 (01): : 454 - &
  • [8] Symplectic Schrodinger equation for many-body systems
    Amorim, R. G. G.
    Fernandes, M. C. B.
    Khanna, F. C.
    Santana, A. E.
    Vianna, J. D. M.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2020, 35 (06):
  • [9] AN INTEGRODIFFERENTIAL EQUATION APPROACH TO THE MANY-BODY PROBLEM
    DELARIPELLE, MF
    FIEDELDEY, H
    PHYSICS LETTERS B, 1986, 171 (04) : 325 - 330
  • [10] EXACT SPECTRAL PROBLEM SOLUTION FOR A LATTICE MANY-BODY SYSTEM WITH A FLOW
    Aneva, Boyka
    ROMANIAN JOURNAL OF PHYSICS, 2013, 58 (5-6): : 399 - 407