SHORT-TERM SOLAR RADIATION FORECASTING BY USING AN ITERATIVE COMBINATION OF WAVELET ARTIFICIAL NEURAL NETWORKS

被引:8
|
作者
Royer, Julio Cesar [1 ]
Wilhelm, Volmir Eugenio [2 ]
Teixeira Junior, Luiz Albino [3 ]
Carreno Franco, Edgar Manuel [4 ]
机构
[1] Fed Inst Parana IFPR, Paranavai, PR, Brazil
[2] Fed Univ Parana UFPR, Curitiba, Parana, Brazil
[3] Latin Amer Integrat Fed Univ UNILA, Foz do Iguacu, PR, Brazil
[4] Western Parana State Univ Unioeste, Cascavel, Parana, Brazil
来源
INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION | 2016年 / 7卷 / 01期
关键词
solar radiation time series; wavelet decomposition; artificial neural networks; forecasts;
D O I
10.14807/ijmp.v7i1.393
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
The information provided by accurate forecasts of solar energy time series are considered essential for performing an appropriate prediction of the electrical power that will be available in an electric system, as pointed out in Zhou et al. (2011). However, since the underlying data are highly non-stationary, it follows that to produce their accurate predictions is a very difficult assignment. In order to accomplish it, this paper proposes an iterative Combination of Wavelet Artificial Neural Networks (CWANN) which is aimed to produce short-term solar radiation time series forecasting. Basically, the CWANN method can be split into three stages: at first one, a decomposition of level p, defined in terms of a wavelet basis, of a given solar radiation time series is performed, generating Wavelet Components (WC); at second one, these WCs are individually modeled by the k different ANNs, where, and the 5 best forecasts of each WC are combined by means of another ANN, producing the combined forecasts of WC; and, at third one, the combined forecasts WC are simply added, generating the forecasts of the underlying solar radiation data. An iterative algorithm is proposed for iteratively searching for the optimal values for the CWANN parameters, as we will see. In order to evaluate it, ten real solar radiation time series of Brazilian system were modeled here. In all statistical results, the CWANN method has achieved remarkable greater forecasting performances when compared with a traditional ANN (described in Section 2.1).
引用
收藏
页码:271 / 288
页数:18
相关论文
共 50 条
  • [21] Improved short-term load forecasting using bagged neural networks
    Khwaja, A. S.
    Naeem, M.
    Anpalagan, A.
    Venetsanopoulos, A.
    Venkatesh, B.
    ELECTRIC POWER SYSTEMS RESEARCH, 2015, 125 : 109 - 115
  • [22] Most Influential Variables for Solar Radiation Forecasting Using Artificial Neural Networks
    Alluhaidah, B. M.
    Shehadeh, S. H.
    El-Hawary, M. E.
    2014 IEEE ELECTRICAL POWER AND ENERGY CONFERENCE (EPEC), 2014, : 71 - 75
  • [23] Applying Artificial Neural Networks to Short-Term PM2.5 Forecasting Modeling
    Oprea, Mihaela
    Mihalache, Sanda Florentina
    Popescu, Marian
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2016, 2016, 475 : 204 - 211
  • [24] An efficient approach for short term load forecasting using artificial neural networks
    Kandil, Nahi
    Wamkeue, Rene
    Saad, Maarouf
    Georges, Semaan
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2006, 28 (08) : 525 - 530
  • [25] Short Term Electrical Load Forecasting for Mauritius using Artificial Neural Networks
    Bugwan, Tina
    King, Robert T. F. Ah
    2008 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), VOLS 1-6, 2008, : 3667 - 3672
  • [26] Artificial neural network based short-term load forecasting
    Munkhjargal, S
    Manusov, VZ
    KORUS 2004, VOL 1, PROCEEDINGS, 2004, : 262 - 264
  • [27] Short-Term Forecasting of Electric Loads Using Nonlinear Autoregressive Artificial Neural Networks with Exogenous Vector Inputs
    Buitrago, Jaime
    Asfour, Shihab
    ENERGIES, 2017, 10 (01)
  • [28] Use of Artificial Neural Networks for Short Term Load Forecasting
    Ioannis, Arvanitidis Athanasios
    Dimitrios, Bargiotas
    25TH PAN-HELLENIC CONFERENCE ON INFORMATICS WITH INTERNATIONAL PARTICIPATION (PCI2021), 2021, : 18 - 22
  • [29] Short term electrical load forecasting with artificial neural networks
    Czernichow, T
    Piras, A
    Imhof, K
    Caire, P
    Jaccard, Y
    Dorizzi, B
    Germond, A
    ENGINEERING INTELLIGENT SYSTEMS FOR ELECTRICAL ENGINEERING AND COMMUNICATIONS, 1996, 4 (02): : 85 - 99
  • [30] Evolving artificial neural networks for short term load forecasting
    Srinivasan, D
    NEUROCOMPUTING, 1998, 23 (1-3) : 265 - 276