Riordan Arrays, Orthogonal Polynomials as Moments, and Hankel Transforms

被引:0
作者
Barry, Paul [1 ]
机构
[1] Sch Sci, Waterford Inst Technol, Waterford, Ireland
关键词
Legendre polynomials; Hermite polynomials; integer sequence; orthogonal polynomials; moments; Riordan array; Hankel determinant; Hankel transform;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Taking the examples of Legendre and Hermite orthogonal polynomials, we show how to interpret the fact that these orthogonal polynomials are moments of other orthogonal polynomials in terms of their associated Riordan arrays. We use these means to calculate the Hankel transforms of the associated polynomial sequences
引用
收藏
页数:37
相关论文
共 33 条
  • [1] Arregui J. L., 2001, TANGENT BERNOULLI NU
  • [2] Barry P., 2007, J INTEGER SEQ, V10
  • [3] Riordan group involutions
    Cheon, Gi-Sang
    Kim, Hana
    Shapiro, Louis W.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (04) : 941 - 952
  • [4] Chihara TS., 1978, INTRO ORTHOGONAL POL
  • [5] Left-inversion of combinatorial sums
    Corsani, C
    Merlini, D
    Sprugnoli, R
    [J]. DISCRETE MATHEMATICS, 1998, 180 (1-3) : 107 - 122
  • [6] Cvetkovic A., 2002, J INTEGER SEQ, V5
  • [7] Deutsch E, 2005, ADV APPL MATH, V34, P101, DOI 10.1016/j.aam.2004.05.002
  • [8] Deutsch E., 2004, LECT NOTES NANKAI U
  • [9] Production Matrices and Riordan Arrays
    Deutsch, Emeric
    Ferrari, Luca
    Rinaldi, Simone
    [J]. ANNALS OF COMBINATORICS, 2009, 13 (01) : 65 - 85
  • [10] On the powers and the inverse of a tridiagonal matrix
    Elouafi, Mohamed
    Aiat Hadj, Ahmed Driss
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2009, 211 (01) : 137 - 141