An Asymptotic Stability Criteria of Delay Differential Equations on Time Scals

被引:0
作者
Ardabili, Jamal Saffar [1 ]
Samian, Zahra Poursepahi [1 ]
机构
[1] Payame Noor Univ, Dept Math, Tehran, Iran
来源
JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS | 2015年 / 15卷 / 02期
关键词
Delay differential equations; Time scale; Asymptotic behavior; Stability;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T be an arbitrary time scale that is unbounded above. In this paper, we will present some stability criteria for first order delay differential equations x(Delta)(t) = a(t)x(t) + b(t)x(tau(t)) using their asymptotic behavior.
引用
收藏
页码:137 / 145
页数:9
相关论文
共 10 条
[1]   Stability and periodicity in dynamic delay equations [J].
Adivar, Murat ;
Raffoul, Youssef N. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (02) :264-272
[2]  
Bohner M, 2003, DYN SYST APPL, V12, P45
[3]  
Bohner M., 2001, DYNAMIC EQUATIONS TI
[4]  
Bohner M., 2003, ADV DYNAMIC EQUATION
[5]   On the asymptotics of solutions of delay dynamic equations on time scales [J].
Cermak, Jan ;
Urbanek, Miroslav .
MATHEMATICAL AND COMPUTER MODELLING, 2007, 46 (3-4) :445-458
[6]   Comparison theorems for linear dynamic equations on time scales [J].
Erbe, L ;
Peterson, A ;
Rehák, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 275 (01) :418-438
[7]   A meshless method for solving delay differential equation using radial basis functions with error analysis [J].
Ghomanjani, F. ;
Ghassabzade, F. Akhavan .
JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2014, 11 (02) :105-110
[8]  
Hilger S., 1988, THESIS
[9]  
Kipins M. N., 2007, SIMILARITIES ANS DIS
[10]  
Ladas G., 1991, OSCILLATION THEORY D