INFINITELY MANY SOLUTION FOR A NONLINEAR NAVIER BOUNDARY VALUE PROBLEM INVOLVING THE p-BIHARMONIC

被引:0
作者
Candito, Pasquale [1 ]
Livrea, Roberto [2 ]
机构
[1] Univ Reggio Calabria, DIMET, Fac Ingn, Localita Feo Vito, I-89100 Reggio Di Calabria, Italy
[2] Univ Reggio Calabria, Dipartimento Patrimonio Architetton & Urbanist, Fac Architettura, I-89100 Reggio Di Calabria, Italy
来源
STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA | 2010年 / 55卷 / 04期
关键词
Infinitely many solutions; p-Biharmonic type operators; Navier boundary value problem; Critical point theory;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The existence of infinitely many solutions is established for a class of nonlinear elliptic equations involving the p-biharmonic operator and under Navier boundary value conditions. The approach adopted is fully based on critical point theory.
引用
收藏
页码:41 / 51
页数:11
相关论文
共 14 条
[1]  
Bonanno G, INFINITELY MAN UNPUB
[2]   A boundary value problem for fourth-order elastic beam equations [J].
Bonanno, Gabriele ;
Di Bella, Beatrice .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 343 (02) :1166-1176
[3]   Infinitely Many Solutions for a Boundary Value Problem with Discontinuous Nonlinearities [J].
Bonanno, Gabriele ;
Bisci, Giovanni Molica .
BOUNDARY VALUE PROBLEMS, 2009,
[4]  
Guo H. M., 2009, J S CHINA NORMAL U N, V28, P18
[5]   Three solutions for a Navier boundary value problem involving the p-biharmonic [J].
Li, Chun ;
Tang, Chun-Lei .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (3-4) :1339-1347
[6]   Multiplicity results for a fourth-order semilinear elliptic problem [J].
Micheletti, AM ;
Pistoia, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 31 (07) :895-908
[7]  
Rabinowitz P. H, 1985, CBMS REG C MATH, V65
[8]   A general variational principle and some of its applications [J].
Ricceri, B .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 113 (1-2) :401-410
[9]  
Struwe M., 1996, VARIATIONAL METHODS
[10]   Infinitely many solutions for indefinite semilinear elliptic equations without symmetry [J].
Tehrani, HT .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1996, 21 (3-4) :541-557