INTERSECTION-THEOREMS AND MOD P-RANK OF INCLUSION MATRICES

被引:42
作者
FRANKL, P [1 ]
机构
[1] AT&T BELL LABS,MURRAY HILL,NJ 07974
关键词
D O I
10.1016/0097-3165(90)90007-J
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Higher incidence matrices have proved an important tool both in design theory and extremal set theory. In the present paper some tight bounds on the rank over finite fields of some inclusion matrices are derived. In particular, a short proof of Wilson's mod p rank formula is given. A problem of Graham, Li, and Li concerning bases for so-called null t-designs is solved as well. © 1990.
引用
收藏
页码:85 / 94
页数:10
相关论文
共 11 条
  • [1] ALON N, IN PRESS MULTILINEAR
  • [2] A SHORT PROOF OF THE NONUNIFORM RAY-CHAUDHURI-WILSON INEQUALITY
    BABAI, L
    [J]. COMBINATORICA, 1988, 8 (01) : 133 - 135
  • [3] FRANKL P, 1986, ARS COMBINATORIA, V22, P97
  • [4] INTERSECTION-THEOREMS WITH GEOMETRIC CONSEQUENCES
    FRANKL, P
    WILSON, RM
    [J]. COMBINATORICA, 1981, 1 (04) : 357 - 368
  • [5] ON THE STRUCTURE OF TERT-DESIGNS
    GRAHAM, RL
    LI, SYR
    LI, WCW
    [J]. SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1980, 1 (01): : 8 - 14
  • [6] Graver J. E., 1973, J COMB THEORY A, V15, P75
  • [7] INCIDENCE MATRICES OF FINITE PROJECTIVE AND AFFINE SPACES
    KANTOR, WM
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1972, 124 (04) : 315 - &
  • [8] INCIDENCE MATRICES OF SUBSETS - A RANK FORMULA
    LINIAL, N
    ROTHSCHILD, BL
    [J]. SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1981, 2 (03): : 333 - 340
  • [9] Ray-Chaudhuri D.K., 1975, OSAKA J MATH, V12, P737
  • [10] Wilson R. M., 1973, UTILITAS MATHEMATICA, V4, P207