A WAVE-EQUATION IN 2+1 - PAINLEVE ANALYSIS AND SOLUTIONS

被引:89
作者
ESTEVEZ, PG [1 ]
LEBLE, S [1 ]
机构
[1] KALININGRAD STATE UNIV,DEPT THEORET PHYS,KALININGRAD 236041,RUSSIA
关键词
D O I
10.1088/0266-5611/11/4/018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper the nonlinear equation m(ty) = (m(yxx) + m(x)m(y))(x) is throughly analysed. The Painleve test is performed yielding a positive result. The Backlund transformations are found and the Darboux-Moutard-Mahveev formalism arises in the context of this analysis. The singular manifold method, based upon the Painleve analysis, is proved to be a useful tool for generating solutions. Some interesting explicit expressions for one and two solitons are obtained and analysed in such a way.
引用
收藏
页码:925 / 937
页数:13
相关论文
共 26 条
[1]  
ABLOWITZ MJ, 1991, LECT NOTE SERIES, V149, P269
[2]   ON THE CHARACTERIZATION OF MOUTARD TRANSFORMATIONS [J].
ATHORNE, C .
INVERSE PROBLEMS, 1993, 9 (02) :217-232
[3]  
BOGOYAVLENSKII OI, 1990, USP MAT NAUK, V45, P17
[4]   ON THE SPECTRAL TRANSFORM OF A KORTEWEG-DEVRIES EQUATION IN 2 SPATIAL DIMENSIONS [J].
BOITI, M ;
LEON, JJP ;
MANNA, M ;
PEMPINELLI, F .
INVERSE PROBLEMS, 1986, 2 (03) :271-279
[5]   PAINLEVE EXPANSIONS FOR NONINTEGRABLE EVOLUTION-EQUATIONS [J].
CARIELLO, F ;
TABOR, M .
PHYSICA D, 1989, 39 (01) :77-94
[6]   THE PAINLEVE PROPERTY, A MODIFIED BOUSSINESQ EQUATION AND A MODIFIED KADOMTSEV-PETVIASHVILI EQUATION [J].
CLARKSON, PA .
PHYSICA D, 1986, 19 (03) :447-450
[7]   ON A SHALLOW-WATER WAVE-EQUATION [J].
CLARKSON, PA ;
MANSFIELD, EL .
NONLINEARITY, 1994, 7 (03) :975-1000
[8]  
CLARKSON PA, 1994, P IMACS WORLD C COMP, P336
[9]  
CLARKSON PA, 1994, M9436 U EX PREPR
[10]   MODIFIED SINGULAR MANIFOLD EXPANSION - APPLICATION TO THE BOUSSINESQ AND MIKHAILOV-SHABAT SYSTEMS [J].
ESTEVEZ, PG ;
GORDOA, PR ;
ALONSO, LM ;
REUS, EM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (08) :1915-1925