DCNNet: A Distributed Convolutional Neural Network for Remote Sensing Image Classification

被引:0
|
作者
Zhang, Ting [1 ,2 ,3 ,4 ]
Wang, Zhirui [1 ,2 ]
Cheng, Peirui [1 ,2 ]
Xu, Guangluan [1 ,2 ]
Sun, Xian [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Key Lab Network Informat Syst Technol NIST, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100190, Peoples R China
关键词
Attention mechanism; distributed network; progressive inference; remote sensing (RS) image classification; self-distillation;
D O I
暂无
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
With the development of information technology, multiplatform collaborative collection and processing of remote sensing (RS) images has become a significant trend. However, the existing models are challenging to achieve accurate and efficient image interpretation on RS multiplatform systems. To solve this problem, we propose a novel distributed convolutional neural network (DCNNet) and demonstrate the superiority of our method in RS image classification. First, a progressive inference mechanism is introduced to support most images to be classified in advance with satisfactory accuracy, which minimizes redundant cloud transmission and achieves higher inference acceleration. Meanwhile, a distributed self-distillation paradigm is designed to integrate and refine in-depth features, performing efficient knowledge transfer between the terminals and the cloud network. Second, a multiscale feature fusion (MSFF) module is presented to extract valid receptive fields and assign weights to crucial channel dimension features. Finally, a sampling augmentation (SA) attention is proposed to enhance the effective feature representation of RS images through a bottom-up and top-down feedforward structure. We conducted extensive experiments and visual analyses on three benchmark scene classification datasets and one fine-grained dataset. Compared with the existing methods, DCNNet consolidates several advantages in terms of accuracy, computation, transmission, and processing efficiency into a single framework for multiplatform RS image classification.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Big data classification of remote sensing image based on cloud computing and convolutional neural network
    Wu, Xiaobo
    SOFT COMPUTING, 2022, 28 (Suppl 2) : 437 - 437
  • [22] Remote Sensing Image Scene Classification Based on Convolutional Neural Networks
    Liu, Yumei
    Informatica (Slovenia), 2025, 49 (09): : 45 - 54
  • [23] Classification of Optical Remote Sensing Images Based on Convolutional Neural Network
    Li, Yibo
    Liu, Mingjun
    Zhang, Senyue
    2019 6TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT 2019), 2019, : 801 - 806
  • [24] Multisource Remote Sensing Data Classification Based on Convolutional Neural Network
    Xu, Xiaodong
    Li, Wei
    Ran, Qiong
    Du, Qian
    Gao, Lianru
    Zhang, Bing
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (02): : 937 - 949
  • [25] A Feature Aggregation Convolutional Neural Network for Remote Sensing Scene Classification
    Lu, Xiaoqiang
    Sun, Hao
    Zheng, Xiangtao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (10): : 7894 - 7906
  • [26] Application Research of Convolutional Neural Network in Remote Sensing Image Registration
    Yue, Guohua
    Xing, Xiaoli
    PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND APPLICATION ENGINEERING (CSAE2019), 2019,
  • [27] Road Detection of Remote Sensing Image Based on Convolutional Neural Network
    Zhu, Yuting
    Yan, Jingwen
    Wang, Cong
    Zhou, Yiqing
    IMAGE AND GRAPHICS, ICIG 2019, PT II, 2019, 11902 : 106 - 118
  • [28] Remote Sensing Image Registration Using Convolutional Neural Network Features
    Ye, Famao
    Su, Yanfei
    Xiao, Hui
    Zhao, Xuqing
    Min, Weidong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (02) : 232 - 236
  • [29] Remote Sensing Image Object Recognition Based on Convolutional Neural Network
    Zhen, Yumei
    Liu, Huanyu
    Li, Junbao
    Hu, Cong
    Pan, Jeng-Shyang
    PROCEEDINGS FIRST INTERNATIONAL CONFERENCE ON ELECTRONICS INSTRUMENTATION & INFORMATION SYSTEMS (EIIS 2017), 2017, : 814 - 817
  • [30] Classification of High-Resolution Remote Sensing Image Based on Swin Transformer and Convolutional Neural Network
    He Xiaoying
    Xu Weiming
    Pan Kaixiang
    Wang Juan
    Li Ziwei
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (14)