LIGNIN PEROXIDASE - TOWARD A CLARIFICATION OF ITS ROLE INVIVO

被引:0
作者
SARKANEN, S
RAZAL, RA
PICCARIELLO, T
YAMAMOTO, E
LEWIS, NG
机构
[1] VIRGINIA POLYTECH INST & STATE UNIV, DEPT WOOD SCI, BLACKSBURG, VA 24061 USA
[2] VIRGINIA POLYTECH INST & STATE UNIV, DEPT BIOCHEM, BLACKSBURG, VA 24061 USA
[3] UNIV MINNESOTA, DEPT FOREST PROD, ST PAUL, MN 55108 USA
关键词
D O I
暂无
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The extracellular lignin peroxidase from the white-rot basidiomycete Phanerochaete chrysosporium is thought to play an important role in lignin biodegradation. However, the majority of lignin-derived preparations actually experience overall polymerization at the hands of the enzyme in vitro. It has now been found that, in the presence of H2O2 at pH 4.0, the monomeric lignin precursor coniferyl alcohol is polymerized quantitatively by a lignin peroxidase preparation which is uncontaminated with MnII-dependent peroxidases. C-13 NMR spectrometry of the resulting dehydropolymerisates from C-13-labeled monolignols confirms that the frequencies of different interunit linkages are very similar to those engendered through the action of horseradish peroxidase with H2O2. Indeed, lignin peroxidase does not ultimately seem to be a prerequisite for lignin degradation in vivo, yet its activity can still accelerate the conversion of lignin-derived preparations by P. chrysosporium to CO2. Consequently, lignin peroxidase can provisionally be expected to fulfill two important functions. On the one hand, the enzyme may detoxify lower molecular weight phenolic compounds released from lignins during their fungal decomposition. On the other hand, through the introduction of suitable functional groups, lignin peroxidase could indirectly enhance the susceptibility of macromolecular lignin structures toward depolymerization by another enzyme.
引用
收藏
页码:3636 / 3643
页数:8
相关论文
共 62 条