SURFACE STATES IN SEMI-INFINITE CRYSTALS - A GREEN FUNCTION METHOD

被引:4
作者
SCHERER, M
PHARISEAU, P
机构
[1] Laboratorium voor Kristallografie en Studie van de Vaste Stof, Rijksuniversiteit Gent
来源
PHYSICA | 1969年 / 43卷 / 01期
关键词
D O I
10.1016/0031-8914(69)90276-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we develop a Green function method, which can be considered as a generalization of the Kohn and Rostoker method, and which enables us to calculate the surface states in a semi-infinite three-dimensional crystal. We only consider the case of one atom in a unit cell, the extension to complex crystals being straightforward. We do not only demonstrate the existence of two-dimensional energy bands localized at the surface and superimposed on the three-dimensional bandstructure of the bulk, but we derive formulae which can be used for practical calculations if one has the disposal of high speed computers with large capacity. © 1969.
引用
收藏
页码:17 / +
页数:1
相关论文
共 50 条
[31]   On constructing a Green's function for a semi-infinite beam with boundary damping [J].
Akkaya, Tugce ;
van Horssen, Wim T. .
MECCANICA, 2017, 52 (10) :2251-2263
[32]   ON AN EXACT PENALTY FUNCTION METHOD FOR SEMI-INFINITE PROGRAMMING PROBLEMS [J].
Ma, Cheng ;
Li, Xun ;
Yiu, Ka-Fai Cedric ;
Yang, Yongjian ;
Zhang, Liansheng .
JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2012, 8 (03) :705-726
[33]   Method for calculating electronic structures near surfaces of semi-infinite crystals [J].
Abraham, YB ;
Holzwarth, NAW .
PHYSICAL REVIEW B, 2006, 73 (03)
[34]   Nonlinear surface impurity in a semi-infinite two-dimensional square lattice: Green function approach [J].
Molina, Mario I. .
PHYSICAL REVIEW B, 2006, 74 (04)
[35]   SURFACE STATES IN A ONE-DIMENSIONAL PERFECT SEMI-INFINITE CRYSTAL [J].
PHARISEAU, P .
PHYSICA, 1960, 26 (09) :737-743
[36]   Electronic surface states in a semi-infinite effective-mass superlattice [J].
Kucharczyk, R .
THIN SOLID FILMS, 1995, 267 (1-2) :129-133
[37]   SURFACE STATES OF A SEMI-INFINITE DIAMOND CRYSTAL LIMITED BY (100) PLANE [J].
KOUTECKY, J .
CZECHOSLOVAK JOURNAL OF PHYSICS, 1962, 12 (03) :184-&
[38]   Determining the electronic properties of semi-infinite crystals [J].
Hummel, W ;
Bross, H .
PHYSICAL REVIEW B, 1998, 58 (03) :1620-1632
[39]   INVERSE SCATTERING PROBLEM FOR SEMI-INFINITE CRYSTALS [J].
VILLALON, E .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1978, 29 (03) :520-535
[40]   Electromagnetic modes in semi-infinite photonic crystals [J].
Zeng, Y ;
Chen, XS ;
Lu, W .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2005, 30 (1-2) :55-58