UPPER-BOUNDS ON THE NUMBER OF RESONANCES FOR NONCOMPACT RIEMANN SURFACES

被引:64
作者
GUILLOPE, L [1 ]
机构
[1] JOHNS HOPKINS UNIV, DEPT MATH, BALTIMORE, MD 21218 USA
关键词
D O I
10.1006/jfan.1995.1055
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a Riemannian surface of finite geometric type and with hyperbolic ends. The resolvent (Delta(X)-s(l-s))(-1), Res > l of the Laplacian on X extends to a meromorphic family of operators on C and its poles are called resonances. We prove an optimal polynomial bound for their counting function. (C) 1995 Academic Press, Inc.
引用
收藏
页码:364 / 389
页数:26
相关论文
共 36 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS F
[3]  
Boas R.P., 1954, ENTIRE FUNCTIONS
[4]  
DEVERDIERE YC, 1983, ANN I FOURIER, V33, P87
[5]  
EPSTEIN C, UNPUB
[6]   THE LAPLACE OPERATOR ON HYPERBOLIC 3 MANIFOLDS WITH CUSPS OF NON-MAXIMAL RANK [J].
FROESE, R ;
HISLOP, P ;
PERRY, P .
INVENTIONES MATHEMATICAE, 1991, 106 (02) :295-333
[7]   A MOURRE ESTIMATE AND RELATED BOUNDS FOR HYPERBOLIC MANIFOLDS WITH CUSPS OF NON-MAXIMAL RANK [J].
FROESE, R ;
HISLOP, P ;
PERRY, P .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 98 (02) :292-310
[8]  
Gohberg IC., 1969, INTRO THEORY LINEAR
[10]  
GUILLOPE L, 1989, ANN SCI ECOLE NORM S, V22, P137