RECURRENT RANDOM-WALK OF AN INFINITE PARTICLE SYSTEM

被引:30
作者
SPITZER, F [1 ]
机构
[1] CORNELL UNIV,DEPT MATH,ITHACA,NY 14850
关键词
D O I
10.2307/1996754
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:191 / 199
页数:9
相关论文
共 8 条
[1]  
Hewitt Edwin, 1955, JSTOR Arts Sci I, V80, P470, DOI [DOI 10.1090/S0002-9947-1955-0076206-8, 10.1090/s0002-9947-1955-0076206-8]
[2]   ERGODIC THEOREM FOR INTERACTING SYSTEMS WITH ATTRACTIVE INTERACTIONS [J].
HOLLEY, R .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1972, 24 (04) :325-334
[3]  
HOLLEY RH, TO BE PUBLISHED
[4]  
LIGGET TM, 1972, T AM MATH SOC, V165, P471
[5]   CHARACTERIZATION OF INVARIANT MEASURES FOR AN INFINITE PARTICLE SYSTEM WITH INTERACTIONS [J].
LIGGETT, TM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 179 (MAY) :433-453
[6]   CHARACTERIZATION OF INVARIANT MEASURES FOR AN INFINITE PARTICLE SYSTEM WITH INTERACTIONS .2. [J].
LIGGETT, TM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 198 (OCT) :201-213
[7]  
Orey S., 1962, Zeitschrift fu, V1, P174, DOI DOI 10.1007/BF01844420
[8]   INTERACTION OF MARKOV PROCESSES [J].
SPITZER, F .
ADVANCES IN MATHEMATICS, 1970, 5 (02) :246-&