Coherence for Skew-Monoidal Categories

被引:10
作者
Uustalu, Tarmo [1 ]
机构
[1] Tallinn Univ Technol, Inst Cybernet, Tallinn, Estonia
来源
ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE | 2014年 / 153期
关键词
D O I
10.4204/EPTCS.153.5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
I motivate a variation (due to K. Szlachanyi) of monoidal categories called skew-monoidal categories where the unital and associativity laws are not required to be isomorphisms, only natural transformations. Coherence has to be formulated differently than in the well-known monoidal case. In my ( to my knowledge new) version, it becomes a statement of uniqueness of normalizing rewrites. I present a proof of this coherence theorem and also formalize it fully in the dependently typed programming language Agda.
引用
收藏
页码:68 / 77
页数:10
相关论文
共 15 条
  • [1] Monads Need Not Be Endofunctors
    Altenkirch, Thorsten
    Chapman, James
    Uustalu, Tarmo
    [J]. FOUNDATIONS OF SOFTWARE SCIENCE AND COMPUTATIONAL STRUCTURES, PROCEEDINGS, 2010, 6014 : 297 - +
  • [2] Categorification, term rewriting and the Knuth-Bendix procedure
    Beke, Tibor
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2011, 215 (05) : 728 - 740
  • [3] Beylin I, 1996, LECT NOTES COMPUT SC, V1158, P47
  • [4] Categories for computation in context and unified logic
    Blute, RF
    Cockett, JRB
    Seely, RAG
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 1997, 116 (1-3) : 49 - 98
  • [5] Buckley M., 2013, ARXIV13070265
  • [6] Burroni A., 1971, CAH TOP GEOM DIF, V12, P215
  • [7] Kelly G. M., 1964, J ALGEBRA, V1, P397
  • [8] Lack S., 2013, ARXIV13024488
  • [9] Lack S, 2012, THEOR APPL CATEG, V26, P385
  • [10] Lane Saunders Mac, 1963, RICE I PAMPHLET RICE, V49, P28