LIPSCHITZIAN INVERSE FUNCTIONS, DIRECTIONAL-DERIVATIVES, AND APPLICATIONS IN C1,1 OPTIMIZATION

被引:36
作者
KUMMER, B
机构
[1] Department of Mathematics, Humboldt University Berlin, Berlin
关键词
INVERSE LIPSCHITZ FUNCTIONS; IMPLICIT FUNCTIONS; DIRECTIONAL DERIVATIVES; MEAN-VALUE THEOREM; CHAIN RULES; STRONGLY STABLE CRITICAL POINTS;
D O I
10.1007/BF00941302
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The paper shows that Thibault's limit sets allow an iff-characterization of local Lipschitzian invertibility in finite dimension. We consider these sets as directional derivatives and extend the calculus in a way that can be used to clarify whether critical points are strongly stable in C1,1 optimization problems.
引用
收藏
页码:561 / 582
页数:22
相关论文
共 23 条
[1]  
AUBIN JP, 1984, APPLIED NONLINEAR AN
[2]  
Clarke F.H., 1983, OPTIMIZATION NONSMOO
[3]   INVERSE FUNCTION THEOREM [J].
CLARKE, FH .
PACIFIC JOURNAL OF MATHEMATICS, 1976, 64 (01) :97-102
[4]  
Dem'yanov V.F., 1986, QUASIDIFFERENTIAL CA
[5]  
Hiriart-Urruty J. B., 1979, Mathematics of Operations Research, V4, P79, DOI 10.1287/moor.4.1.79
[6]   GENERALIZED HESSIAN MATRIX AND 2ND-ORDER OPTIMALITY CONDITIONS FOR PROBLEMS WITH C1,1 DATA [J].
HIRIARTURRUTY, JB ;
STRODIOT, JJ ;
NGUYEN, VH .
APPLIED MATHEMATICS AND OPTIMIZATION, 1984, 11 (01) :43-56
[7]  
HIRIARTURRUTY JB, 1982, MATH PROGRAM STUD, V17, P1
[8]  
JONGEN HT, 1988, TH1 AACH PREPR
[9]  
KLATTE B, 1988, ADV MATH OPTIMIZATIO, P104
[10]  
Klatte D., 1988, Optimization, V19, P169, DOI 10.1080/02331938808843333