ERROR ANALYSIS OF SOME GALERKIN LEAST-SQUARES METHODS FOR THE ELASTICITY EQUATIONS

被引:218
作者
FRANCA, LP [1 ]
STENBERG, R [1 ]
机构
[1] HELSINKI UNIV TECHNOL,FAC MECH ENGN,SF-02150 ESPOO,FINLAND
关键词
FINITE ELEMENT METHODS; ELASTICITY EQUATIONS; MIXED METHODS; GALERKIN LEAST SQUARES METHODS; STABILIZED METHODS;
D O I
10.1137/0728084
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The recent technique of stabilizing mixed finite element methods by augmenting the Galerkin formulation with least squares terms calculated separately on each element is considered. The error analysis is performed in a unified manner yielding improved results for some methods introduced earlier. In addition, a new formulation is introduced and analyzed.
引用
收藏
页码:1680 / 1697
页数:18
相关论文
共 27 条
[1]  
Arnold D., 1984, CALCOLO, V21, P337, DOI 10.1007/bf02576171
[2]  
Arnold D.N., 1984, JAPAN J APPL MATH, V1, P347
[3]  
ARNOLD DN, 1987, ARCH RATION MECH AN, V98, P143, DOI 10.1007/BF00251231
[4]   A FAMILY OF HIGHER-ORDER MIXED FINITE-ELEMENT METHODS FOR PLANE ELASTICITY [J].
ARNOLD, DN ;
DOUGLAS, J ;
GUPTA, CP .
NUMERISCHE MATHEMATIK, 1984, 45 (01) :1-22
[5]   ANALYSIS OF MIXED METHODS USING MESH DEPENDENT NORMS [J].
BABUSKA, I ;
OSBORN, J ;
PITARANTA, J .
MATHEMATICS OF COMPUTATION, 1980, 35 (152) :1039-1062
[6]   FINITE-ELEMENT METHOD WITH LAGRANGIAN MULTIPLIERS [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1973, 20 (03) :179-192
[7]   STABILIZED MIXED METHODS FOR THE STOKES PROBLEM [J].
BREZZI, F ;
DOUGLAS, J .
NUMERISCHE MATHEMATIK, 1988, 53 (1-2) :225-235
[8]  
BREZZI F, 1974, REV FR AUTOMAT INFOR, V8, P129
[9]  
Brezzi F., 1984, NOTES NUMERICAL FLUI, V10, P11, DOI DOI 10.1007/978-3-663-14169-3_2
[10]  
Ciarlet P.G., 2002, FINITE ELEMENT METHO