HAMILTONICITY IN GRAPHS WITH FEW P-4S

被引:13
作者
HOCHSTATTLER, W [1 ]
TINHOFER, G [1 ]
机构
[1] TECH UNIV MUNICH,D-80290 MUNICH,GERMANY
关键词
HAMILTONICITY; P-4-CONNECTEDNESS; P-4-STRUCTURE; PATH COVER NUMBER; SCATTERING NUMBER;
D O I
10.1007/BF02253613
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In a recent series of articles R. Jamison and S. Olariu developed, starting from an extension of the notion of a cograph, a theory of the decomposition of graphs into P-4-connected components. It turned out in their work that the algorithmic idea to exploit the unique tree structure of cographs can be generalized to graphs with simple P-4-structure. In this paper we will show that deciding hamiltonicity and computing the path covering number are easy tasks for P-4-sparse and P-4-extendible graphs. We thereby generalize a result of H. A. Jung [8] concerning cographs.
引用
收藏
页码:213 / 225
页数:13
相关论文
共 8 条
[1]  
Chvatal V., Tough graphs and Hamiltonian circuits, Discrete Mathematics, 5, pp. 215-228, (1973)
[2]  
Corneil D.G., Lerch H., Stewart L., Complement reducible graphs, Discr. Appl. Math., 3, pp. 163-185, (1981)
[3]  
Golumbic, Algorithmic graph theory and perfect graphs, (1980)
[4]  
Jamison R., Olariu S., P<sub>4</sub>-reducible graphs—a class of uniquely tree-representable graphs, Stud. Appl. Math., 81, pp. 79-87, (1989)
[5]  
Jamison R., Olariu S., On a unique tree representation for P<sub>4</sub>-extendible graphs, Discr. Appl. Math., 34, pp. 151-164, (1991)
[6]  
Jamison R., Olariu S., A unique tree representation for P<sub>4</sub>-sparse graphs, Discr. Appl. Math., 35, pp. 115-129, (1992)
[7]  
Jamison R., Olariu S., P-components and the homogeneous decomposition of graphs, (1994)
[8]  
Jung H.A., On a class of posets and the corresponding comparability graphs, Journal of Comb. Theor. Ser. B, 24, pp. 125-133, (1978)