OSCILLATIONS OF 2ND-ORDER NEUTRAL DIFFERENTIAL-EQUATIONS

被引:33
作者
RUAN, SG [1 ]
机构
[1] UNIV ALBERTA,EDMONTON T6G 2G1,ALBERTA,CANADA
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 1993年 / 36卷 / 04期
关键词
D O I
10.4153/CMB-1993-064-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the oscillatory behavior of the second order neutral delay differential equation (a(t)(x(t) + p(t)x(t-tau))')' + q(t)f(x(t-sigma)) = 0, where t greater-than-or-equal-to t0, tau and sigma are positive constants, a, p, q is-an-element-of C([t0, infinity), R),f is-an-element-of C[R, R]. Some sufficient conditions are established such that die above equation is oscillatory. The obtained oscillation criteria generalize and improve a number of known results about both neutral and delay differential equations.
引用
收藏
页码:485 / 496
页数:12
相关论文
共 22 条
[1]   KAMENEV TYPE THEOREMS FOR 2ND-ORDER MATRIX DIFFERENTIAL-SYSTEMS [J].
ERBE, LH ;
KONG, QK ;
RUAN, SG .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 117 (04) :957-962
[2]  
ERBE LH, 1989, B AUSTRAL MATH SOC, V32, P79
[3]  
FIFE B, 1918, T AM MATH SOC, V19, P341
[4]  
Grace S. R., 1987, RAD MATH, V3, P77
[5]  
Grace S.R., 1989, RADOVI MAT, V5, P121
[6]  
Graef J. R., 1988, RAD MAT, V4, P133
[7]   ON THE ASYMPTOTIC-BEHAVIOR OF SOLUTIONS OF A 2ND-ORDER NONLINEAR NEUTRAL DELAY DIFFERENTIAL-EQUATION [J].
GRAEF, JR ;
GRAMMATIKOPOULOS, MK ;
SPIKES, PW .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 156 (01) :23-39
[8]  
Grammatikopoulos M. K., 1985, RAD MAT, V1, P267
[9]   OSCILLATION AND ASYMPTOTIC-BEHAVIOR OF 2ND ORDER NEUTRAL DIFFERENTIAL-EQUATIONS [J].
GRAMMATIKOPOULOS, MK ;
LADAS, G ;
MEIMARIDOU, A .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1987, 148 :29-40
[10]  
Gyori I., 1991, OSCILLATION THEORY D