A CHARACTERIZATION OF PGL(2, p(n)) BY SOME IRREDUCIBLE COMPLEX CHARACTER DEGREES

被引:9
作者
Heydari, Somayeh [1 ]
Ahanjideh, Neda [1 ]
机构
[1] Shahrekord Univ, Fac Math Sci, Dept Pure Math, Shahrekord, Iran
来源
PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD | 2016年 / 99卷 / 113期
关键词
irreducible character degree; classification theorem of the finite simple group; complex group algebras;
D O I
10.2298/PIM150111017H
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a finite group G, let cd(G) be the set of irreducible complex character degrees of G forgetting multiplicities and X-1(G) be the set of all irreducible complex character degrees of G counting multiplicities. Suppose that p is a prime number. We prove that if G is a finite group such that vertical bar G vertical bar = vertical bar PGL(2, p)vertical bar, p is an element of cd(G) and max(cd(G)) = p + 1, then G congruent to PGL(2, p), S L (2, p) or PSL(2, p) x Lambda, where Lambda is a cyclic group of order (2, p -1). Also, we show that if G is a finite group with X-1(G) = X-1(PGL(2, p(n))), then G congruent to PGL(2, p(n)). In particular, this implies that PGL(2, p n) is uniquely determined by the structure of its complex group algebra.
引用
收藏
页码:257 / 264
页数:8
相关论文
共 12 条
[1]  
Berkovich Y., 1997, AM MATH SOC TRANSL M, V172
[2]  
Conway J. H., 1985, ATLAS FINITE GROUPS
[3]  
Heydari S, 2016, INT J GROUP THEORY, V5, P61
[5]  
HUPPERT B, 1998, CHARACTER THEORY FIN
[6]   GROUPS WITH JUST ONE CHARACTER DEGREE DIVISIBLE BY A GIVEN PRIME [J].
Isaacs, I. M. ;
Moreto, Alexander ;
Navarro, Gabriel ;
Tiep, Pham Huu .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (12) :6521-6547
[7]  
Isaacs I.M, 1976, CHARACTER THEORY FIN, V69
[8]  
Khosravi B, 2014, MONATSH MATH, V175, P277, DOI 10.1007/s00605-013-0582-2
[9]  
Nagao N., 1957, J I POLYTECH OSAKA A, V8, P1
[10]   Simple classical groups of Lie type are determined by their character degrees [J].
Tong-Viet, Hung P. .
JOURNAL OF ALGEBRA, 2012, 357 :61-68