Weighted graphs: Eigenvalues and chromatic number

被引:2
作者
Delorme, C. [1 ]
机构
[1] Univ Paris 11, F-91405 Orsay, France
关键词
chromatic number; eigenvalues; weighted graphs;
D O I
10.5614/ejgta.2016.4.1.2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We revisit Hoffman relation involving chromatic number chi and eigenvalues. We construct some graphs and weighted graphs such that the largest and smallest eigenvalues lambda dan mu satisfy lambda = (1 - chi)mu. We study in particular the eigenvalues of the integer simplex T-m(2); a 3-chromatic graph on ((m+2)(2)) vertices.
引用
收藏
页码:8 / 17
页数:10
相关论文
共 8 条
[1]  
Cvetkovic D., 1980, SPECTRA GRAPHS THEOR
[2]  
Godsil C.D., 1995, HDB COMBINATORICS, P1705
[3]  
HAEMERS WH, 1980, MATH CTR TRACTS, V121
[4]  
Hoffman A, 1970, GRAPH THEORY ITS APP, P79
[5]  
Horn R. A., 2013, MATRIX ANAL, V2nd
[6]  
Horn R. A., 1985, MATRIX ANAL
[7]   On the sum of k largest singular values of graphs and matrices [J].
Nikiforov, Vladimir .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (10) :2394-2401
[8]  
West D. B., 2013, AM MATH MONTHLY, V120, P755