NON-CENTRAL LIMIT-THEOREMS FOR NONLINEAR FUNCTIONALS OF GAUSSIAN FIELDS

被引:384
作者
DOBRUSHIN, RL [1 ]
MAJOR, P [1 ]
机构
[1] HUNGARIAN ACAD SCI,INST MATH,H-1053 BUDAPEST,HUNGARY
来源
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE | 1979年 / 50卷 / 01期
关键词
D O I
10.1007/BF00535673
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let a stationary Gaussian sequence Xn, n=... -1,0,1, ... and a real function H(x) be given. We define the sequences {Mathematical expression}, n=... -1,0,1...; N=1,2, ... where ANare appropriate norming constants. We are interested in the limit behaviour as N→∞. The case when the correlation function r(n)=EX0Xn tends slowly to 0 is investigated. In this situation the norming constants A> N tend to infinity more rapidly than the usual norming sequence A> N=√N. Also the limit may be a non-Gaussian process. The results are generalized to the case when the parameter-set is multi-dimensional. © 1979 Springer-Verlag.
引用
收藏
页码:27 / 52
页数:26
相关论文
共 9 条
[1]   GAUSSIAN AND THEIR SUBORDINATED SELF-SIMILAR RANDOM GENERALIZED FIELDS [J].
DOBRUSHIN, RL .
ANNALS OF PROBABILITY, 1979, 7 (01) :1-28
[2]  
DOBRUSHIN RL, UNPUBLISHED
[3]  
DOBRUSHIN RL, 1977, MATH SCI, V194, P67
[4]  
DOBRUSHIN RL, 1978, MULTICOMPONENT RANDO, P179
[5]  
Ibragimov I., 1971, INDEPENDENT STATIONA
[6]  
ROSENBLATT M, 1961, 4TH P BERK S MATH ST, P411
[7]  
SIMON B, 1974, P PHI2 EUCLIDEAN QUA
[8]   WEAK CONVERGENCE TO FRACTIONAL BROWNIAN-MOTION AND TO ROSENBLATT PROCESS [J].
TAQQU, MS .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1975, 31 (04) :287-302
[9]  
ZYGMUND A, 1959, TRIGONOMETRIC SERIES