MINIMAL VECTOR PADE-APPROXIMATION

被引:4
作者
BULTHEEL, A [1 ]
VANBAREL, M [1 ]
机构
[1] CATHOLIC UNIV LEUVEN,DEPT COMP SCI,B-3030 HEVERLEE,BELGIUM
关键词
Minimal Padé; minimal partial realization; simultaneous approximation; vector Padé;
D O I
10.1016/0377-0427(90)90413-T
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe the minimal vector Padé approximation problem, which consists in finding Padé approximants with a common denominator for a number of series. These approximants are minimal in the sense that for a given order of approximation and a given discrepancy in numerator and denominator degrees, the degree of the rational approximant is minimal. Properties and solution methods are derived from an associated partial realization problem. © 1990.
引用
收藏
页码:27 / 37
页数:11
相关论文
共 19 条
[11]   VECTOR-VALUED RATIONAL INTERPOLANTS .2. [J].
GRAVESMORRIS, PR .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1984, 4 (02) :209-224
[12]  
Jager H, 1964, INDAG MATH, V26, P193, DOI [10.1016/S1385-7258(64)50023-2, DOI 10.1016/S1385-7258(64)50023-2]
[13]  
Kalman R.E., 1979, ACTA POLYTECH SCAND, V31, P9
[14]  
MAHLER K, 1968, COMPOS MATH, V19, P95
[15]  
Nikishin E.M., 1980, MATH USSR SB, V113, p[499, 409]
[16]   A CANONICAL MATRIX CONTINUED-FRACTION SOLUTION OF THE MINIMAL (PARTIAL) REALIZATION PROBLEM [J].
VANBAREL, M ;
BULTHEEL, A .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1989, 122 :973-1002
[17]  
VANBAREL M, 1988, NONLINEAR NUMERICAL, P143
[18]  
VANISEGHEM J, 1987, THESIS LILLE