THE MOMENT MAP AND LINE BUNDLES OVER PRESYMPLECTIC TORIC MANIFOLDS

被引:0
作者
KARSHON, Y [1 ]
TOLMAN, S [1 ]
机构
[1] HARVARD UNIV,CAMBRIDGE,MA 02138
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We apply symplectic methods in studying smooth toric varieties with a closed, invariant 2-form omega that may have degeneracies. Consider the push-forward of Liouville measure by the moment map. We show that it is a ''twisted polytope'' in t* which is determined by the winding numbers of a map S(n-1) --> t* around points in t*. The index of an equivariant, holomorphic line-bundle with curvature omega is a virtual T-representation which can easily be read from this 'twisted polytope''.
引用
收藏
页码:465 / 484
页数:20
相关论文
共 13 条
[1]   THE MOMENT MAP AND EQUIVARIANT CO-HOMOLOGY [J].
ATIYAH, MF ;
BOTT, R .
TOPOLOGY, 1984, 23 (01) :1-28
[2]   CONVEXITY AND COMMUTING HAMILTONIANS [J].
ATIYAH, MF .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1982, 14 (JAN) :1-15
[3]   PERIODIC HAMILTONIANS AND CONVEX IMAGES OF MOMENTUM MAPPING [J].
DELZANT, T .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1988, 116 (03) :315-339
[4]   ON THE VARIATION IN THE CO-HOMOLOGY OF THE SYMPLECTIC FORM OF THE REDUCED PHASE-SPACE [J].
DUISTERMAAT, JJ ;
HECKMAN, GJ .
INVENTIONES MATHEMATICAE, 1982, 69 (02) :259-268
[5]  
Griffiths P, 1978, PRINCIPLES ALGEBRAIC
[6]  
GROSSBERG M, 1991, THESIS MIT
[7]  
GROSSBERG M, BOTT TOWERS COMPLETE
[8]   CONVEXITY PROPERTIES OF THE MOMENT MAPPING [J].
GUILLEMIN, V ;
STERNBERG, S .
INVENTIONES MATHEMATICAE, 1982, 67 (03) :491-513
[9]  
Guillemin V., 1988, J GEOM PHYS, V5, P721
[10]  
GUILLEMIN V, COHOMOLOGICAL PROPER