Nikol'skii inequality for algebraic polynomials on a multidimensional Euclidean sphere

被引:0
作者
Arestov, V. V. [1 ,2 ]
Deikalova, M. V. [3 ]
机构
[1] Russian Acad Sci, Ural Branch, Inst Math & Mech, Moscow, Russia
[2] Russian Acad Sci, Ural Branch, Inst Math & Mech, Physicomath Sci, Moscow, Russia
[3] Ural Fed Univ, Inst Math & Comp Sci, Ekaterinburg, Russia
来源
TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN | 2013年 / 19卷 / 02期
关键词
multidimensional Euclidean sphere; algebraic polynomials; Nikol'skii inequality; polynomials that deviate least from zero;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the sharp Nikol'skii inequality between the uniform norm and L-q norm of algebraic polynomials of a given (total) degree n >= 1 on the unit sphere Sm-1 of the Euclidean space R-m for 1 <= q < infinity. We prove that the polynomial rho(n) in one variable with unit leading coefficient, that deviates least from zero in the space L-q(psi) (-1, 1) of functions f such that vertical bar f vertical bar(q) is summable on (-1, 1) with the Jacobi weight psi(t) - (1 - t)(alpha) (1 + t)(beta), alpha = (m - 1)/2, beta = (m - 3)/2, as a zonal polynomial in one variable t = xi(m), x = (xi(1), xi(2), . . . , xi(m)) is an element of Sm-1, is (in a certain sense, unique) extremal in the Nikol'skii inequality on the sphere Sm-1. The corresponding one-dimensional inequalities for algebraic polynomials on a closed interval are discussed.
引用
收藏
页码:34 / 47
页数:14
相关论文
共 8 条
[1]  
Arestov V.V., 2012, CONSTRUCTIVE THEORY, P30
[2]   Sharp integral inequalities for fractional derivatives of trigonometric polynomials [J].
Arestov, Vitalii V. ;
Glazyrina, Polina Yu. .
JOURNAL OF APPROXIMATION THEORY, 2012, 164 (11) :1501-1512
[3]  
Babenko V., 2002, APPROXIMATION THEORY, P24
[4]  
Gorbachev D. V., 2004, P STEKLOV I MATH S2, pS117
[5]  
Jackson D., 1933, B AM MATH SOC, V39, P889
[6]  
Milovanovic G.V., 1994, TOPICS POLYNOMIALS E, DOI 10.1142/1284
[7]  
Rahman Q. I., 2002, ANAL THEORY POLYNOMI
[8]  
Zamir Amir R, 2018, TITLE ERROR