SET-CONTRACTIONS AND BALL-CONTRACTIONS IN LP-SPACES

被引:8
作者
BENAVIDES, TD
AYERBE, JM
机构
[1] Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Sevilla, 41080 Sevilla
关键词
D O I
10.1016/0022-247X(91)90210-Q
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the space Lp(Ω), 1 ≤ p < + ∞, where Ω is a σ-finite measure space. Defined δ and γ by: δ = 2max{ 1 p, (p - 1) p} and γ = 2|p - 2| p. The following relationship between set-contractions and ball-contractions in separable Lp(Ω) spaces is proved: If T: Lp(Ω) → Lp(Ω) is a k-set-contraction (respectively set-condensing mapping) then T γ is a k-ball-contraction (respectively ball-condensing mapping). If T: Lp(Ω) → Lp(Ω) is a k-ball-contraction, then T δ is a k-set-contraction. Furthermore these constants γ and δ are the best possible. © 1991.
引用
收藏
页码:500 / 506
页数:7
相关论文
共 9 条
[1]  
BENAVIDES TD, 1986, J LOND MATH SOC, V34, P120
[3]  
Gol'denstein L S., 1957, UCH ZAP KISHINEV GOS, V29, P29
[4]  
Kuratowski K., 1930, FUND MATH, V15, P301, DOI 10.4064/fm-15-1-301-309
[5]  
REICH S, 1972, J FUNCT ANAL APPL, V39, P717
[6]  
SADOVSKI BN, 1967, FUNKTSIONAL ANAL, V4, P74
[7]   MAPPINGS OF ACCRETIVE AND PSEUDO-A-PROPER TYPE [J].
WEBB, JRL .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1982, 85 (01) :146-152
[8]   ON CONNECTIONS BETWEEN SET AND BALL MEASURES OF NONCOMPACTNESS [J].
WEBB, JRL ;
ZHAO, WY .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1990, 22 :471-477
[9]  
WELLS J. H., 1975, ERGEBNISSE MATH IHRE, V84