The Information Criterion

被引:0
作者
Ghahramani, M. [1 ]
机构
[1] Payam Noor Univ, Dept Math Stat, Tehran, Iran
关键词
Consistency; AIC; information criterion; Kullbake-Leibler risk; model selection;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Akaike information criterion, AIC, is widely used for model selection. Using the AIC as the estimator of asymptotic unbias for the second term Kullbake-Leibler risk considers the divergence between the true model and offered models. However, it is an inconsistent estimator. A proposed approach the problem is the use of A'IC, a consistently offered information criterion. Model selection of classic and linear models are considered by a Monte Carlo simulation.
引用
收藏
页码:444 / 454
页数:11
相关论文
共 10 条
[1]  
Akaike, 1973, 2 INT S INF THEOR, P267, DOI DOI 10.1007/978-1-4612-1694-0_15
[3]  
Cavanagh J. E., 1994, STAT PROBABILITY LET, V44, P333
[4]  
Cawley GC, 2010, J MACH LEARN RES, V11, P2079
[5]  
Choi H., 2006, DIFFERENTIAL G UNPUB
[6]   ON KULLBACK-LEIBLER LOSS AND DENSITY-ESTIMATION [J].
HALL, P .
ANNALS OF STATISTICS, 1987, 15 (04) :1491-1519
[7]   Generalized linear model selection using R2 [J].
Hu, Bo ;
Shao, Jun .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (12) :3705-3712
[8]   Generalised information criteria in model selection [J].
Konishi, S ;
Kitagawa, G .
BIOMETRIKA, 1996, 83 (04) :875-890
[9]   ON INFORMATION AND SUFFICIENCY [J].
KULLBACK, S ;
LEIBLER, RA .
ANNALS OF MATHEMATICAL STATISTICS, 1951, 22 (01) :79-86
[10]  
Takeuchi K., 1976, MATH SCI, P12