Generalized Jacobian and Discrete Logarithm Problem on Elliptic Curves

被引:0
作者
Daghigh, H. [1 ]
Bahramian, M. [1 ]
机构
[1] Univ Kashan, Fac Sci, Dept Math, Kashan, Iran
来源
IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS | 2009年 / 4卷 / 02期
关键词
Elliptic Curve; Discrete Logarithm Problem; Generalized Jacobian;
D O I
10.7508/ijmsi.2009.02.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E be an elliptic curve over the finite field Fq, P a point in E(F-q) of order n, and Q a point in the group generated by P. The discrete logarithm problem on E is to find the number k such that Q = kP. In this paper we reduce the discrete logarithm problem on E[n] to the discrete logarithm on the group F-q(*), the multiplicative group of nonzero elements of F-q, in the case where n | q - 1, using generalized jacobian of E.
引用
收藏
页码:55 / 64
页数:10
相关论文
共 16 条