Generalized Jacobian and Discrete Logarithm Problem on Elliptic Curves

被引:0
作者
Daghigh, H. [1 ]
Bahramian, M. [1 ]
机构
[1] Univ Kashan, Fac Sci, Dept Math, Kashan, Iran
来源
IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS | 2009年 / 4卷 / 02期
关键词
Elliptic Curve; Discrete Logarithm Problem; Generalized Jacobian;
D O I
10.7508/ijmsi.2009.02.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E be an elliptic curve over the finite field Fq, P a point in E(F-q) of order n, and Q a point in the group generated by P. The discrete logarithm problem on E is to find the number k such that Q = kP. In this paper we reduce the discrete logarithm problem on E[n] to the discrete logarithm on the group F-q(*), the multiplicative group of nonzero elements of F-q, in the case where n | q - 1, using generalized jacobian of E.
引用
收藏
页码:55 / 64
页数:10
相关论文
共 16 条
[1]   Quandle cohomology and state-sum invariants of knotted curves and surfaces [J].
Carter, JS ;
Jelsovsky, D ;
Kamada, S ;
Langford, L ;
Saito, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (10) :3947-3989
[2]   On the security of generalized Jacobian cryptosystems [J].
Dechene, Isabelle .
ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2007, 1 (04) :413-426
[3]  
Dechene I, 2006, LECT NOTES COMPUT SC, V4076, P421
[4]  
Dechene Isabelle, 2005, THESIS
[5]  
Hilton Peter, 1971, HOMOLOGICAL ALGEBRA
[6]  
KOBLITZ N, 1987, MATH COMPUT, V48, P203, DOI 10.1090/S0025-5718-1987-0866109-5
[7]   USE OF ELLIPTIC-CURVES IN CRYPTOGRAPHY [J].
MILLER, VS .
LECTURE NOTES IN COMPUTER SCIENCE, 1986, 218 :417-426
[8]   EQUIVALENCE RELATIONS ON ALGEBRAIC CURVES [J].
ROSENLICHT, M .
ANNALS OF MATHEMATICS, 1952, 56 (01) :169-191
[9]   GENERALIZED JACOBIAN VARIETIES [J].
ROSENLICHT, M .
ANNALS OF MATHEMATICS, 1954, 59 (03) :505-530
[10]  
SERRE JP, 1988, ALGEBRAIC GROUPS CLA, V117