Complexity of Some Special named Graphs and Chebyshev polynomials

被引:0
作者
Daoud, S. N. [1 ]
机构
[1] El Minufiya Univ, Fac Sci, Dept Math, Shibin Al Kawm, Egypt
来源
INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS | 2013年 / 32卷 / 02期
关键词
Number of spanning trees; Ladder; Fan; Wheel; Prism; Moebius ladders; Chebyshev polynomials;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The number of spanning trees tau(G) in graphs (networks) is an important invariant. Some important relations for expanding some special determinants using Chybechiev polynomials of the first kind and second kind are obtained. A large number of theorems of number of the spanning trees(its complexity), of Ladders, fans, wheels, prisms and Moebius ladders are proved.
引用
收藏
页码:77 / 84
页数:8
相关论文
共 50 条
  • [31] Resultants of Chebyshev Polynomials
    Gishe, Jemal
    Ismail, Mourad E. H.
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2008, 27 (04): : 499 - 508
  • [32] Chebyshev polynomials for operators
    Albrecht, Ernst
    ARCHIV DER MATHEMATIK, 2009, 92 (05) : 399 - 404
  • [33] Symmetrized Chebyshev polynomials
    Rivin, I
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (05) : 1299 - 1305
  • [34] On Chebyshev polynomials and their applications
    Lv, Xingxing
    Shen, Shimeng
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [35] ON CHEBYSHEV POLYNOMIALS OF MATRICES
    Faber, Vance
    Liesen, Joerg
    Tichy, Petr
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2010, 31 (04) : 2205 - 2221
  • [36] On Chebyshev polynomials and their applications
    Xingxing Lv
    Shimeng Shen
    Advances in Difference Equations, 2017
  • [37] An Extension of the Chebyshev Polynomials
    Anna Tatarczak
    Complex Analysis and Operator Theory, 2016, 10 : 1519 - 1533
  • [38] A note on orthogonal polynomials described by Chebyshev polynomials
    Castillo, K.
    de Jesus, M. N.
    Petronilho, J.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 497 (02)
  • [39] Representing Sums of Finite Products of Chebyshev Polynomials of Third and Fourth Kinds by Chebyshev Polynomials
    Kim, Taekyun
    Kim, Dae San
    Dolgy, Dmitry, V
    Ryoo, Cheon Seoung
    SYMMETRY-BASEL, 2018, 10 (07):
  • [40] Combinatorially composing Chebyshev polynomials
    Benjamin, Arthur T.
    Walton, Daniel
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (08) : 2161 - 2167