Design of a delay dependent wide area damping controller using Cyber-Physical Power System architecture

被引:0
|
作者
Sun, Zhenglong [1 ]
Zhao, Jingbo [2 ]
Long, Hao [1 ]
机构
[1] Northeast Elect Power Univ, Key Lab Modern Power Syst Simulat & Control & Rene, Minist Educ, Jilin 132012, Peoples R China
[2] Zhejiang Elect power Corp, Lishui Power Supply Co, Zhejiang 323000, Peoples R China
基金
中国国家自然科学基金;
关键词
Cyber-physical system; Time delay compensation; Model predictive control;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
With the wide application of information and communication technology in power grids, the integration and collaboration of information networks and physical grid have become an essential feature of the smart grid, constituting a typical power information physical system. However, information network has communication time delay problem, which tends to deteriorate the system controller performance or even counter-tune, leading to system instability. To effectively reduce lowfrequency oscillation of the wide-area interconnected grid and overcome the negative impact of the communication network's delay problem, a delay dependent Wide Area Damping Controller(WADC) is designed using cyber-physical power system architecture. First, we establish a power information physical system simulation platform based on Object linking and embedding for Process Control (OPC) technology, implementing the joint operation of the power system simulation tool DIgSILENT and the information system simulation tool MATLAB. The platform can effectively respond to the system's information system and physical system interaction effects during simulation. Then, to compensate for communication delays in the power information physical system, this paper proposes a new WADC strategy that uses a Model Predictive Controller (MPC) to generate control commands and an adaptive time delay compensator to compensate for the random communication delays generated in the communication. Finally, a case study with various uncertainties and through the interference test of a four-machine system and 39 bus system, the proposed control strategy is proposed. (c) 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:510 / 517
页数:8
相关论文
共 50 条
  • [41] A Cyber-Physical System Design Approach
    Sveda, Miroslav
    Vrba, Radimir
    PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE ON SYSTEMS (ICONS 2011), 2011, : 12 - 18
  • [42] Distributed cyber-physical intrusion detection using stacking learning for wide-area protection system
    Lu, Qiuyu
    Gao, Qize
    Li, June
    Xie, Xuanxuan
    Guo, Wenrui
    Wang, Jin
    COMPUTER COMMUNICATIONS, 2024, 215 : 91 - 102
  • [43] Discrete Wide-area Power System Damping Controller using Periodic Output Feedback
    Bhadu, Mahendra
    Senroy, Nilanjan
    Janardhanan, Sivaramakrishnan
    ELECTRIC POWER COMPONENTS AND SYSTEMS, 2016, 44 (17) : 1892 - 1903
  • [44] Vulnerability assessment of cyber-physical power system considering virtual cyber-physical connections
    Chen K.
    Wen F.
    Zhao J.
    Li L.
    Yang Y.
    Tan Y.
    Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2017, 37 (12): : 67 - 72and79
  • [45] A generic architecture to design Cyber-Physical and Human Systems
    Berger, Thierry
    Sallez, Yves
    Dequidt, Antoine
    Trentesaux, Damien
    IFAC PAPERSONLINE, 2020, 53 (05): : 344 - 349
  • [46] Robust wide-area damping controller design for inter-area oscillations with signals' delay
    Liu, Fang
    Li, Yong
    Wu, Min
    Zhou, Yicheng
    Yokoyama, Ryuichi
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2016, 11 (02) : 206 - 215
  • [47] Design of Adaptive Damping Controller With Wide-Area Measurements Considering Unknown Power System Dynamics
    Prakash, Abhineet
    El Moursi, Mohamed Shawky
    Parida, S. K.
    El-Saadany, Ehab F.
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2024, 39 (03) : 5150 - 5162
  • [48] Reliability Analyses of Wide-Area Protection System Considering Cyber-Physical System Constraints
    He, Ruiwen
    Yang, Shenghui
    Deng, Jianhua
    Feng, Teng
    Lai, Loi Lei
    Shahidehpour, Mohammad
    IEEE TRANSACTIONS ON SMART GRID, 2021, 12 (04) : 3458 - 3467
  • [49] Cyber-Physical Systems Approach for Wide Area Control Applications
    St Leger, Aaron
    James, John
    2018 IEEE TEXAS POWER AND ENERGY CONFERENCE (TPEC), 2018,
  • [50] Design and experiment of wide area HVDC supplementary damping controller considering time delay in China southern power grid
    He, J.
    Lu, C.
    Wu, X.
    Li, P.
    Wu, J.
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2009, 3 (01) : 17 - 25