A FULLY-GALERKIN METHOD FOR THE NUMERICAL-SOLUTION OF AN INVERSE PROBLEM IN A PARABOLIC PARTIAL-DIFFERENTIAL EQUATION

被引:31
作者
LUND, J
VOGEL, CR
机构
[1] Dept. of Math. Sci., Montana State Univ., Bozeman, MT
关键词
D O I
10.1088/0266-5611/6/2/005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A fully-Galerkin approach to the coefficient recovery (parameter identification) problem for a linear parabolic partial differential equation is introduced. The forward problem is discretised with a sinc basis in the temporal domain and a finite element basis in the spatial domain. Tikhonov regularisation is applied to deal with the ill-posedness of the inverse problem. In the solution of the resulting nonlinear optimisation problem, advantage is taken of the diagonalisation solution procedure used for the discretised forward problem. An example with noisy data is included.
引用
收藏
页码:205 / 217
页数:13
相关论文
共 11 条
[1]  
DENNIS JE, 1983, NUMERICAL METHODS UN
[2]  
Golub G.H., 1983, MATRIX COMPUTATIONS
[3]   HESSENBERG-SCHUR METHOD FOR THE PROBLEM AX+XB=C [J].
GOLUB, GH ;
NASH, S ;
VANLOAN, C .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1979, 24 (06) :909-913
[4]  
HOFFMANN KH, 1984, NUMER FUNC ANAL OPT, V7, P157
[5]  
JONCA K, 1989, LECTURE NOTES PURE A, V115
[6]   THE SPACE-TIME SINC-GALERKIN METHOD FOR PARABOLIC PROBLEMS [J].
LEWIS, DL ;
LUND, J ;
BOWERS, KL .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1987, 24 (09) :1629-1644
[7]  
MCARTHUR K, 1990, IN PRESS NUM MATH
[8]   A CROSS VALIDATED BAYESIAN RETRIEVAL ALGORITHM FOR NONLINEAR REMOTE-SENSING EXPERIMENTS [J].
OSULLIVAN, F ;
WAHBA, G .
JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 59 (03) :441-455
[9]   NUMERICAL-METHODS BASED ON WHITTAKER CARDINAL, OR SINC FUNCTIONS [J].
STENGER, F .
SIAM REVIEW, 1981, 23 (02) :165-224
[10]  
Tikhonov A. N., SOLUTIONS ILL POSED