Principle of analysis of strain-softening rock mass and its application

被引:0
作者
Wang Shui-lin [1 ]
Zheng Hong [1 ]
Liu Quan-sheng [1 ]
Guo Ming-wei [1 ]
Ge Xiu-run [1 ]
机构
[1] Chinese Acad Sci, Inst Rock & Soil Mech, State Key Lab Geomech & Geotech Engn, Wuhan 430071, Hubei, Peoples R China
关键词
strain-softening; brittle-plastic model; circular tunnel; numerical solution; Mohr-Coulomb yield criterion;
D O I
暂无
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
In stress-strain curve, the process of decline of uniaxial stress at increasing strain is defined as strain-softening. Many types of geomaterials behave in strain-softening way in the case of disturbance of engineering activities. When the stress-strain relationship is described in mathematical formulation, the matrix of tangential elastic moduli is no longer positive-definite. Thereby difficulties arise in finding the solution to strain-softening problem. Strain-softening process is simplified into a series of brittle-plastic behavior; and solving brittle-plastic problem comes down to obtaining a series of brittle-plastic solutions. On the basis of classic plasticity theory, the method for analyzing strain- softening behaviour is proposed; and the corresponding solution process is implemented in finite element code. Furthermore, the influences of different strength-weakening modes on the distribution of plastic zone in the surrounding rock mass of a circular tunnel are studied. The longitudinal deformation profile (LDP) obtained by strain-softening constitutive model is also analyzed; and it is compared with the measurements in a tunnel. The preliminary numerical analyses indicate that the presented results look reasonable.
引用
收藏
页码:609 / +
页数:15
相关论文
共 50 条
[1]  
ADACHI T, 1991, ARCH APPL MECH, V61, P183
[2]   Ground response curves for rock masses exhibiting strain-softening behaviour [J].
Alonso, E ;
Alejano, LR ;
Varas, F ;
Fdez-Manín, G ;
Carranza-Torres, C .
INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2003, 27 (13) :1153-1185
[3]   NONLOCAL CONTINUUM DAMAGE, LOCALIZATION INSTABILITY AND CONVERGENCE [J].
BAZANT, ZP ;
PIJAUDIERCABOT, G .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1988, 55 (02) :287-293
[4]   A FINITE-ELEMENT WITH EMBEDDED LOCALIZATION ZONES [J].
BELYTSCHKO, T ;
FISH, J ;
ENGELMANN, BE .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1988, 70 (01) :59-89
[5]  
Cao Wengui, 2004, CHINESE J ROCK MECH, V23, P3223
[6]   Application of the convergence-confinement method of tunnel design to rock masses that satisfy the Hoek-Brown failure criterion [J].
Carranza-Torres, C ;
Fairhurst, C .
TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2000, 15 (02) :187-213
[7]  
[陈胜宏 CHEN Shenghong], 2007, [岩石力学与工程学报, Chinese Journal of Rock Mechanics and Engineering], V26, P1116
[8]   LOCALIZATION IN A COSSERAT CONTINUUM UNDER STATIC AND DYNAMIC LOADING CONDITIONS [J].
DEBORST, R ;
SLUYS, LJ .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1991, 90 (1-3) :805-827
[9]   GRADIENT-DEPENDENT PLASTICITY - FORMULATION AND ALGORITHMIC ASPECTS [J].
DEBORST, R ;
MUHLHAUS, HB .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1992, 35 (03) :521-539
[10]  
Desai C. S., 2001, MECH MAT INTERFACES