Periodic solutions for some second-order impulsive Hamiltonian systems

被引:0
作者
Vahedi, Fatemeh [1 ]
Afrouzi, Ghasem A. [1 ]
Alimohammady, M. [1 ]
机构
[1] Univ Mazandaran, Fac Math Sci, Dept Math, Babol Sar, Iran
来源
ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES | 2018年 / 45卷 / 02期
关键词
Periodic solutions; Impulsive Hamiltonian systems; Sobolev's inequality; Critical point;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we study the existence of periodic solutions for a class of second-order impulsive Hamiltonian systems. Some new existence theorems are obtained by the least action principle.
引用
收藏
页码:303 / 311
页数:9
相关论文
共 34 条
  • [1] Multiple nonnegative solutions for second order impulsive differential equations
    Agarwal, RP
    O'Regan, D
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2000, 114 (01) : 51 - 59
  • [2] SOLVABILITY OF SEMILINEAR GRADIENT OPERATOR EQUATIONS
    BERGER, MS
    SCHECHTER, M
    [J]. ADVANCES IN MATHEMATICS, 1977, 25 (02) : 97 - 132
  • [3] Bohner M, 2017, OPUSC MATH, V37, P353, DOI 10.7494/OpMath.2017.37.3.353
  • [4] New results for perturbed Hamiltonian systems with impulses
    Chen, Huiwen
    He, Zhimin
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (18) : 9489 - 9497
  • [5] Multiplicity results for nonlinear mixed boundary value problem
    D'Agui, Giuseppina
    [J]. BOUNDARY VALUE PROBLEMS, 2012, : 1 - 12
  • [6] Periodic solutions for sublinear systems via variational approach
    Ding, Wei
    Qian, Dingbian
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (04) : 2603 - 2609
  • [7] Periodic perturbations of Hamiltonian systems
    Fonda, Alessandro
    Garrione, Maurizio
    Gidoni, Paolo
    [J]. ADVANCES IN NONLINEAR ANALYSIS, 2016, 5 (04) : 367 - 382
  • [8] Theory and applications of first-order systems of Stieltjes differential equations
    Frigon, Marlene
    Lopez Pouso, Rodrigo
    [J]. ADVANCES IN NONLINEAR ANALYSIS, 2017, 6 (01) : 13 - 36
  • [9] Graef J.R., 2015, ELECTRON J DIFFER EQ, V2015, P1
  • [10] Graef J. R., 2016, INT J PURE APPL MATH, V109, P85