NOTE ON K-PLANE INTEGRAL TRANSFORMS

被引:30
作者
SOLMON, DC
机构
[1] Department of Mathematics, Oregon State University, Corvallis
关键词
D O I
10.1016/0022-247X(79)90196-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Π be a k-dimensional subspace of Rn, n ≥ 2, and write x = (x′, x″) with x′ in Π and x″ in the orthogonal complement Π⊥. The k-plane transform of a measurable function f{hook} in the direction Π at the point x″ is defined by Lf{hook}(Π, x″) = ∝Πf{hook}(x′, x″) dx′. In this article certain a priori inequalities are established which show in particular that if f{hook} ε{lunate} Lp(Rn), 1 ≤ p $ ̌ n k, then f{hook} is integrable over almost every translate of almost every k-space. Mapping properties of the k-plane transform between the spaces Lp(Rn), p ≤ 2, and certain Lebesgue spaces with mixed norm on a vector bundle over the Grassmann manifold of k-spaces in Rn are also obtained. © 1979.
引用
收藏
页码:351 / 358
页数:8
相关论文
共 8 条
[1]  
BUDINGER TF, 1976, P FASEB S
[2]  
Helgason S. U., 1965, ACTA MATH-DJURSHOLM, V113, P153, DOI 10.1007/BF02391776
[3]  
LUDWIG D, 1966, COMMUN PUR APPL MATH, V19, P49
[4]  
Radon J., 1917, BER SAECHSISCHE AKAD, V29, P277
[5]   LOWER DIMENSIONAL INTEGRABILITY OF L2 FUNCTIONS [J].
SMITH, KT ;
SOLMON, DC .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1975, 51 (03) :539-549
[6]   PRACTICAL AND MATHEMATICAL ASPECTS OF PROBLEM OF RECONSTRUCTING OBJECTS FROM RADIOGRAPHS [J].
SMITH, KT ;
SOLMON, DC ;
WAGNER, SL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 83 (06) :1227-1270
[7]  
SOBOLEV SL, 1938, CR ACAD SCI URSS, V29, P5
[8]   X-RAY TRANSFORM [J].
SOLMON, DC .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1976, 56 (01) :61-83