WAVE-EQUATION, O(2,2), AND SEPARATION OF VARIABLES ON HYPERBOLOIDS

被引:18
作者
KALNINS, EG [1 ]
MILLER, W [1 ]
机构
[1] UNIV MINNESOTA, SCH MATH, MINNEAPOLIS, MN 55455 USA
关键词
D O I
10.1017/S0308210500019752
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We classify group-theoretically all separable coordinate systems for the eigenvalue equation of the Laplace-Beltrami operator on the hyperboloid [FORMULA OMITED], finding 71 orthogonal and 3 non-orthogonal systems. For a number of cases the explicit spectral resolutions are worked out. We show that our results have application to the problem of separation of variables for the wave equation and to harmonic analysis on the hyperboloid and the group manifold SL(2, R). In particular, most past studies of SL(2, R) have employed only 6 of the 74 coordinate systems in which the Casimir eigenvalue equation separates. © 1978, Royal Society of Edinburgh. All rights reserved.
引用
收藏
页码:227 / 256
页数:30
相关论文
共 23 条
[1]   IRREDUCIBLE UNITARY REPRESENTATIONS OF THE LORENTZ GROUP [J].
BARGMANN, V .
ANNALS OF MATHEMATICS, 1947, 48 (03) :568-640
[2]  
ERDELYI A, 1951, HIGHER TRANSCENDENTA, V1
[3]  
Gelfand I. M., 1964, GENERALIZED FUNCTION, V1
[4]  
GELFAND IM, 1966, GEN FUNCT, V5, pCH7
[5]   LIE THEORY AND WAVE-EQUATION IN SPACE-TIME .1. LORENTZ GROUP [J].
KALNINS, EG ;
MILLER, W .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (01) :1-16
[6]   LIE THEORY AND SEPARATION OF VARIABLES .3. EQUATION FTT-FSS = GAMMA-2F [J].
KALNINS, EG ;
MILLER, W .
JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (07) :1025-1032
[7]   LIE THEORY AND SEPARATION OF VARIABLES .11. EPD EQUATION [J].
KALNINS, EG ;
MILLER, W .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (03) :369-377
[8]   LIE THEORY AND WAVE-EQUATION IN SPACE-TIME .3. SEMI-SUBGROUP COORDINATES [J].
KALNINS, EG ;
MILLER, W .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (02) :271-280
[9]   MIXED BASIS MATRIX-ELEMENTS FOR SUBGROUP REDUCTIONS OF SO(2,1) [J].
KALNINS, EG .
JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (05) :654-657
[10]   CORRECTION [J].
KALNINS, EG .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (07) :1531-1531