PROSTATEx Challenges for computerized classification of prostate lesions from multiparametric magnetic resonance images

被引:139
作者
Armato, Samuel G., II [1 ]
Huisman, Henkjan [2 ]
Drukker, Karen [1 ]
Hadjiiski, Lubomir [3 ]
Kirby, Justin S. [4 ]
Petrick, Nicholas [5 ]
Redmond, George [6 ]
Giger, Maryellen L. [1 ]
Cha, Kenny [3 ,5 ]
Mamonov, Artem [7 ]
Kalpathy-Cramer, Jayashree [7 ]
Farahani, Keyvan [6 ]
机构
[1] Univ Chicago, Dept Radiol, Chicago, IL 60637 USA
[2] Radboud Univ Nijmegen, Dept Radiol & Nucl Med, Med Ctr, Nijmegen, Netherlands
[3] Univ Michigan, Dept Radiol, Ann Arbor, MI 48109 USA
[4] Frederick Natl Lab Canc Res, Canc Imaging Program, Frederick, MD USA
[5] US FDA, Ctr Devices & Radiol Hlth, Silver Spring, MD USA
[6] NCI, Canc Imaging Program, Div Canc Treatment & Diag, Bethesda, MD 20892 USA
[7] MGH Harvard Med Sch, Boston, MA USA
基金
美国国家卫生研究院;
关键词
grand challenge; multiparametric magnetic resonance images; prostate cancer; Gleason Grade Group; imaging biomarker; lesion classification;
D O I
10.1117/1.JMI.5.4.044501
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Grand challenges stimulate advances within the medical imaging research community; within a competitive yet friendly environment, they allow for a direct comparison of algorithms through a well-defined, centralized infrastructure. The tasks of the two-part PROSTATEx Challenges (the PROSTATEx Challenge and the PROSTATEx-2 Challenge) are (1) the computerized classification of clinically significant prostate lesions and (2) the computerized determination of Gleason Grade Group in prostate cancer, both based on multiparametric magnetic resonance images. The challenges incorporate well-vetted cases for training and testing, a centralized performance assessment process to evaluate results, and an established infrastructure for case dissemination, communication, and result submission. In the PROSTATEx Challenge, 32 groups apply their computerized methods (71 methods total) to 208 prostate lesions in the test set. The area under the receiver operating characteristic curve for these methods in the task of differentiating between lesions that are and are not clinically significant ranged from 0.45 to 0.87; statistically significant differences in performance among the top-performing methods, however, are not observed. In the PROSTATEx-2 Challenge, 21 groups apply their computerized methods (43 methods total) to 70 prostate lesions in the test set. When compared with the reference standard, the quadratic-weighted kappa values for these methods in the task of assigning a five-point Gleason Grade Group to each lesion range from -0.24 to 0.27; superiority to random guessing can be established for only two methods. When approached with a sense of commitment and scientific rigor, challenges foster interest in the designated task and encourage innovation in the field. (C) 2018 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:9
相关论文
共 43 条
[1]   Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study [J].
Ahmed, Hashim U. ;
Bosaily, Ahmed El-Shater ;
Brown, Louise C. ;
Gabe, Rhian ;
Kaplan, Richard ;
Parmar, Mahesh K. ;
Collaco-Moraes, Yolanda ;
Ward, Katie ;
Hindley, Richard G. ;
Freeman, Alex ;
Kirkham, Alex P. ;
Oldroyd, Robert ;
Parker, Chris ;
Emberton, Mark .
LANCET, 2017, 389 (10071) :815-822
[2]  
[Anonymous], P SPIE INT SOC OPT E
[3]   LUNGx Challenge for computerized lung nodule classification [J].
Armato, Samuel G., III ;
Drukker, Karen ;
Li, Feng ;
Hadjiiski, Lubomir ;
Tourassi, Georgia D. ;
Engelmann, Roger M. ;
Giger, Maryellen L. ;
Redmond, George ;
Farahani, Keyvan ;
Kirby, Justin S. ;
Clarke, Laurence P. .
JOURNAL OF MEDICAL IMAGING, 2016, 3 (04)
[4]   Special Section Guest Editorial: LUNGx Challenge for computerized lung nodule classification: Reflections and lessons learned [J].
Armato, Samuel G. ;
Hadjiiski, Lubomir ;
Tourassi, Georgia D. ;
Drukker, Karen ;
Giger, Maryellen L. ;
Li, Feng ;
Redmond, George ;
Farahani, Keyvan ;
Kirby, Justin S. ;
Clarke, Laurence P. .
Journal of Medical Imaging, 2015, 2 (02)
[5]   Characterization of Prostate Cancer with Gleason Score of at Least 7 by Using Quantitative Multiparametric MR Imaging: Validation of a Computer-aided Diagnosis System in Patients Referred for Prostate Biopsy [J].
Au Hoang Dinh ;
Melodelima, Christelle ;
Souchon, Remi ;
Moldovan, Paul C. ;
Bratan, Flavie ;
Pagnoux, Gaele ;
Mege-Lechevallier, Florence ;
Ruffion, Alain ;
Crouzet, Sebastien ;
Colombel, Marc ;
Rouviere, Olivier .
RADIOLOGY, 2018, 287 (02) :525-533
[6]   Final Gleason Score Prediction Using Discriminant Analysis and Support Vector Machine Based on Preoperative Multiparametric MR Imaging of Prostate Cancer at 3T [J].
Citak-Er, Fusun ;
Vural, Metin ;
Acar, Omer ;
Esen, Tarik ;
Onay, Aslihan ;
Ozturk-Isik, Esin .
BIOMED RESEARCH INTERNATIONAL, 2014, 2014
[7]   The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository [J].
Clark, Kenneth ;
Vendt, Bruce ;
Smith, Kirk ;
Freymann, John ;
Kirby, Justin ;
Koppel, Paul ;
Moore, Stephen ;
Phillips, Stanley ;
Maffitt, David ;
Pringle, Michael ;
Tarbox, Lawrence ;
Prior, Fred .
JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) :1045-1057
[8]   A COEFFICIENT OF AGREEMENT FOR NOMINAL SCALES [J].
COHEN, J .
EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT, 1960, 20 (01) :37-46
[9]   The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma Definition of Grading Patterns and Proposal for a New Grading System [J].
Epstein, Jonathan I. ;
Egevad, Lars ;
Amin, Mahul B. ;
Delahunt, Brett ;
Srigley, John R. ;
Humphrey, Peter A. .
AMERICAN JOURNAL OF SURGICAL PATHOLOGY, 2016, 40 (02) :244-252
[10]   Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images [J].
Fehr, Duc ;
Veeraraghavan, Harini ;
Wibmer, Andreas ;
Gondo, Tatsuo ;
Matsumoto, Kazuhiro ;
Vargas, Herbert Alberto ;
Sala, Evis ;
Hricak, Hedvig ;
Deasy, Joseph O. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (46) :E6265-E6273