PRODUCTS OF IDEMPOTENT INTEGER MATRICES

被引:28
作者
FOUNTAIN, J
机构
[1] Department of Mathematics, University of York, Heslington
关键词
D O I
10.1017/S030500410007050X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E denote the set of non-identity idempotent matrices in the full matrix ring M(n)(R) over a principal ideal domain R. A necessary and sufficient condition is found for the subsemigroup generated by E to be the set of all matrices in M(n)(R) of rank less than n. The condition is satisfied when R is a discrete valuation ring and when R is the ring of integers. Thus every n x n matrix of rank less than n is a product of idempotent integer matrices.
引用
收藏
页码:431 / 441
页数:11
相关论文
共 12 条
[1]  
Clifford A.H., 1961, ALGEBRAIC THEORY SEM, VI
[3]   ON PRODUCTS OF IDEMPOTENT MATRICES [J].
ERDOS, JA .
GLASGOW MATHEMATICAL JOURNAL, 1967, 8 :118-&
[4]  
FOUNTAIN J, 1982, P LOND MATH SOC, V44, P103
[5]   REGULAR SEMIGROUPS [J].
HALL, TE .
JOURNAL OF ALGEBRA, 1973, 24 (01) :1-24
[6]   PRODUCTS OF IDEMPOTENTS IN REGULAR-RINGS .2. [J].
HANNAH, J ;
OMEARA, KC .
JOURNAL OF ALGEBRA, 1989, 123 (01) :223-239
[7]  
Howie J. M., 1976, INTRO SEMIGROUP THEO
[8]  
HOWIE JM, 1966, J LONDON MATH SOC, V41, P707
[9]  
Kaplansky I., 1954, INFINITE ABELIAN GRO
[10]  
Newman M., 1972, INTEGRAL MATRICES