SINGULAR VECTORS OF QUANTUM GROUP-REPRESENTATIONS FOR STRAIGHT LIE-ALGEBRA ROOTS

被引:28
作者
DOBREV, VK [1 ]
机构
[1] UNIV GOTTINGEN,INST THEORET PHYS,W-3400 GOTTINGEN,GERMANY
关键词
D O I
10.1007/BF00405600
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give explicit formulae for singular vectors of Verma modules over U(q)(G), where G is any complex simple Lie algebra. The vectors we present correspond exhaustively to a class of positive roots of G which we call straight roots. In some special cases, we give singular vectors corresponding to arbitrary positive roots. For our vectors we use a special basis of U(q)(G-), where G- is the negative roots subalgebra of G, which was introducted in our earlier work in the case q = 1. This basis seems more economical than the Poincare-Birkhoff-Witt type of basis used by Malikov, Feigin, and Fuchs for the construction of singular vectors of Verma modules in the case q = 1. Furthermore, this basis turns out to be part of a general basis recently introduced for other reasons by Lusztig for U(q)(B-), where B- is a Borel subalgebra of G.
引用
收藏
页码:251 / 266
页数:16
相关论文
共 77 条
[1]  
Alvarez-Gaume L., 1989, CERNTH554089
[2]   DUALITY AND QUANTUM GROUPS [J].
ALVAREZGAUME, L ;
GOMEZ, C ;
SIERRA, G .
NUCLEAR PHYSICS B, 1990, 330 (2-3) :347-398
[3]   QUANTUM GROUP INTERPRETATION OF SOME CONFORMAL FIELD-THEORIES [J].
ALVAREZGAUME, L ;
GOMEZ, C ;
SIERRA, G .
PHYSICS LETTERS B, 1989, 220 (1-2) :142-152
[4]   HIDDEN QUANTUM SYMMETRIES IN RATIONAL CONFORMAL FIELD-THEORIES [J].
ALVAREZGAUME, L ;
GOMEZ, C ;
SIERRA, G .
NUCLEAR PHYSICS B, 1989, 319 (01) :155-186
[5]  
Andrews G.E, 1986, REGIONAL C SERIES MA, V66
[6]  
[Anonymous], 1982, LECT NOTES PHYS
[7]  
Bernshtein I.N., 1971, FUNCT ANAL APPL+, V5, P1, DOI 10.1007/BF01075841
[8]  
Bourbaki, 1968, ACTUALITES SCI IND, V1337
[9]  
BRINK L, 1990, MEMORIAL VOLUME V KN, P16
[10]  
DECONCINI C, 1990, 75 PIS SNS MATH PREP