FRACTAL DIMENSIONS - COMPUTATIONAL PROBLEMS

被引:1
|
作者
VAVRIV, DM
RYABOV, VB
机构
来源
USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS | 1989年 / 29卷 / 04期
关键词
D O I
10.1016/0041-5553(89)90111-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A comparative analysis is performed of the basic methods for calculating fractal dimensions and a new computational technique is proposed. A relationships is derived between the invariant distribution function and the probability distribution function of the distances between points on a strange attractor. The effect of boundaries and singularities in the invariant distribution function on fractal dimensions is investigated. Fractal dimensions are computed for particular systems with chaotic behaviour.
引用
收藏
页码:18 / 26
页数:9
相关论文
共 50 条
  • [11] Fractal dimensions of fractal transformations and quantization dimensions for bi-Lipschitz mappings
    Priyadarshi, Amit
    Verma, Manuj
    Verma, Saurabh
    JOURNAL OF FRACTAL GEOMETRY, 2025, 12 (1-2) : 1 - 33
  • [12] THEORETICAL PROPERTIES OF FRACTAL DIMENSIONS FOR FRACTAL STRUCTURES
    Fernandez-Martinez, Manuel
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2015, 8 (06): : 1113 - 1128
  • [13] COMPUTATIONAL STUDY OF EFFECTS OF PROBLEM DIMENSIONS ON SOLUTION TIMES FOR TRANSPORTATION PROBLEMS
    ROSS, GT
    KLINGMAN, D
    NAPIER, A
    JOURNAL OF THE ACM, 1975, 22 (03) : 413 - 424
  • [14] Palmprint verification based on fractal codes and fractal dimensions
    Putra, Darma
    Gede, I. Ketut
    Susanto, Adhi
    Harjoko, Agus
    Widodo, Thomas Sri
    PROCEEDINGS OF THE EIGHTH IASTED INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING, 2006, : 323 - +
  • [15] ON FRACTAL DIMENSIONS OF FRACTAL FUNCTIONS USING FUNCTION SPACES
    Chandra, Subhash
    Bbas, Syed A.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2022, 106 (03) : 470 - 480
  • [16] Fractal dimensions of the Rosenblatt process
    Daw, Lara
    Kerchev, George
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2023, 161 : 544 - 571
  • [17] Fractal dimensions as chaos indicators
    Freistetter, F
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2000, 78 (1-4): : 211 - 225
  • [18] Synergetics and fractal dimensions in tribology
    A. Kh. Dzhanakhmedov
    O. A. Dyshin
    Journal of Friction and Wear, 2011, 32 : 61 - 71
  • [19] FRACTAL DIMENSIONS AND GEOMETRIES OF CAVES
    CURL, RL
    MATHEMATICAL GEOLOGY, 1986, 18 (08): : 765 - 783
  • [20] Fractal Dimensions of Macromolecular Structures
    Todoroff, Nickolay
    Kunze, Jens
    Schreuder, Herman
    Hessler, Gerhard
    Baringhaus, Karl-Heinz
    Schneider, Gisbert
    MOLECULAR INFORMATICS, 2014, 33 (09) : 588 - 596