Event-related potentials (ERPs) were recorded from healthy subjects in response to unilaterally flashed high and low luminance bar stimuli presented randomly to left and right field locations. Their task was to covertly and selectively attend to either the left or right stimulus locations (separate blocks) in order to detect infrequent shorter target bars of either luminance. Independent of attention, higher stimulus luminance resulted in higher ERP amplitudes for the posterior N95 (80-110 ms), occipital P1 (110-140 ms), and parietal N1 (130-180 ms). Brighter stimuli also resulted in shorter peak latency for the occipital N1 component (135-220 ms); this effect was not observed for the N1 components over parietal, central or frontal regions. Significant attention-related amplitude modulations were obtained for the occipital P1, occipital, parietal and central N1, the occipital and parietal P2, and the parietal N2 components; these components were larger to stimuli at the attended location. In contrast to the relatively short latencies of both spatial attention and luminance effects, the first interaction between luminance and spatial attention effects was observed for the P3 component to the target stimuli (350-750 ms). This suggests that interactions of spatial attention and stimulus luminance previously reported for reaction time measures may not reflect the earliest stages of sensory/perceptual processing. Differences in the way in which luminance and attention affected the occipital P1, occipital N1 and parietal N1 components suggest dissociations among these ERPs in the mechanisms of visual and attentional processing they reflect, Nonetheless, scalp current density mappings of the attention effects throughout the latency ranges of the P1 and N1 components show the most prominent attention-related activity to be in lateral occipital scalp areas. Such a pattern is consistent with the spatially selective filtering of information into the ventral stream of visual processing which is responsible for complex feature analysis and object identification.
机构:
Univ Calif Berkley, Grad Grp Vis Sci, Sch Optometry, Berkeley, CA USA
Univ Calif Berkley, Helen Wills Neurosci Inst, Berkeley, CA USAUniv Hosp LMU, Dept Radiol, Munich, Germany
机构:
Univ Calif Berkley, Grad Grp Vis Sci, Sch Optometry, Berkeley, CA USA
Univ Calif Berkley, Helen Wills Neurosci Inst, Berkeley, CA USAUniv Hosp LMU, Dept Radiol, Munich, Germany
机构:
Univ Calif Davis, Ctr Mind & Brain, Davis, CA 95618 USA
Univ Florida, J Crayton Pruitt Family Dept Biomed Engn, Gainesville, FL 32611 USAUniv Calif Davis, Ctr Mind & Brain, Davis, CA 95618 USA
Meyyappan, Sreenivasan
Rajan, Abhijit
论文数: 0引用数: 0
h-index: 0
机构:
Univ Florida, J Crayton Pruitt Family Dept Biomed Engn, Gainesville, FL 32611 USAUniv Calif Davis, Ctr Mind & Brain, Davis, CA 95618 USA
Rajan, Abhijit
Yang, Qiang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Florida, J Crayton Pruitt Family Dept Biomed Engn, Gainesville, FL 32611 USAUniv Calif Davis, Ctr Mind & Brain, Davis, CA 95618 USA
Yang, Qiang
Mangun, George R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Davis, Ctr Mind & Brain, Davis, CA 95618 USA
Univ Calif Davis, Dept Psychol, Livermore, CA 95616 USA
Univ Calif Davis, Dept Neurol, Davis, CA 95616 USAUniv Calif Davis, Ctr Mind & Brain, Davis, CA 95618 USA
Mangun, George R.
Ding, Mingzhou
论文数: 0引用数: 0
h-index: 0
机构:
Univ Florida, J Crayton Pruitt Family Dept Biomed Engn, Gainesville, FL 32611 USAUniv Calif Davis, Ctr Mind & Brain, Davis, CA 95618 USA
机构:
Univ Calif San Diego, Swartz Ctr Computat Neurosci, Inst Neural Computat, La Jolla, CA 92093 USA
Univ Munich, Dept Psychol, Munich, GermanyUniv Calif San Diego, Swartz Ctr Computat Neurosci, Inst Neural Computat, La Jolla, CA 92093 USA
Gramann, Klaus
Toellner, Thomas
论文数: 0引用数: 0
h-index: 0
机构:
Univ Munich, Dept Psychol, Munich, GermanyUniv Calif San Diego, Swartz Ctr Computat Neurosci, Inst Neural Computat, La Jolla, CA 92093 USA
Toellner, Thomas
Mueller, Hermann J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Munich, Dept Psychol, Munich, Germany
Birkbeck Coll, Dept Psychol, London, EnglandUniv Calif San Diego, Swartz Ctr Computat Neurosci, Inst Neural Computat, La Jolla, CA 92093 USA