ON TAYLOR'S COEFFICIENTS OF THE HURWITZ ZETA FUNCTION

被引:0
作者
Boyadzhiev, Khristo N. [1 ]
机构
[1] Ohio Northern Univ, Dept Math, Ada, OH 45810 USA
来源
JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS | 2008年 / 12卷 / 01期
关键词
exponential polynomial; Stirling numbers; Bernoulli polynomials; Hurwitz zeta function; Lerch zeta function;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We find a representation for the Maclaurin coefficients zeta(n)(a) of the Hurwitz zeta function zeta(s, a) = (sic)zeta(n) (a)s(n), | s | < 1, in terms of semi-convergent series zeta(n)(a) = -1 + (sic) Bk+1(a - 1)/(k + 1)! where B-n(x) are the Bernoulli polynomials and (sic) are the (absolute) Stirling numbers of the first kind. When a = 1 this gives a representation for the coefficients of the Riemann zeta function. Our main instrument is a certain series transformation formula. A similar result is proved also for the Maclaurin coefficients of the Lerch zeta function.
引用
收藏
页码:103 / 112
页数:10
相关论文
共 10 条
[1]  
APOSTOL TM, 1985, MATH COMPUT, V44, P223, DOI 10.1090/S0025-5718-1985-0771044-5
[2]  
Apostol Tom M., PACIFIC J MATH, V1, P161
[3]  
Berndt B.C., 1985, RAMANUJANS NOTEBOOKS, P135
[4]  
Boyadzhiev K.N., 2005, INT J MATH MATH SCI, V23, P3849, DOI DOI 10.1155/IJMMS.2005.3849
[5]  
Boyadzhiev Kh.N., 2008, ADV APPL DISCRETE MA, V1, P109
[6]  
Erdelyi A., 1953, HIGHER TRANSCENDENTA
[7]  
Graham R.L., 1994, CONCRETE MATH, Vsecond
[8]  
Hardy G. H., 1991, DIVERGENT SERIES
[9]   POWER-SERIES EXPANSIONS OF RIEMANN ZETA-FUNCTION [J].
KEIPER, JB .
MATHEMATICS OF COMPUTATION, 1992, 58 (198) :765-773
[10]  
LEHMER DH, 1988, MATH COMPUT, V50, P265, DOI 10.1090/S0025-5718-1988-0917834-X