A GEOMETRIC APPROACH OF THE GENERALIZED LEAST-SQUARES ESTIMATION IN ANALYSIS OF COVARIANCE-STRUCTURES

被引:1
|
作者
WANG, SJ [1 ]
LEE, SY [1 ]
机构
[1] CHINESE UNIV HONG KONG,DEPT STAT,SHA TIN,HONG KONG
关键词
GENERALIZED LEAST SQUARES; INTRINSIC CURVATURE; PARAMETER EFFECT CURVATURE; BIAS; COVARIANCE MATRIX; INFORMATION LOSS;
D O I
10.1016/0167-7152(94)00146-Y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, the generalized least-squares estimation of the covariance structure model is studied from a geometrical point of view. General definitions of the intrinsic curvature and the parameter-effect curvature are defined for the model. Based on the general result, the second-order approximations of the bias and the covariance matrix of the generalized least-squares estimator are established. The information loss of the estimator is also computed under the multivariate normal assumption.
引用
收藏
页码:39 / 47
页数:9
相关论文
共 50 条