Structural Stability for a Class of Nonlinear Wave Equations

被引:0
作者
Dinlemez, Ulku [1 ]
机构
[1] Gazi Univ, Fac Art & Sci, Dept Math, Ankara, Turkey
来源
GAZI UNIVERSITY JOURNAL OF SCIENCE | 2009年 / 22卷 / 02期
关键词
Degasperis; Procesi equation; Camassa-Holm equation; traveling wave;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper we discuss the structural stability of an initial value problem defined for the equation u(t)-u(txx) + auu(x) = beta u(x)u(xx) + uu(xxx) (i. 1) where alpha,beta are constants, x is an element of R, is an element of R+. For the choices of alpha and beta , (i. 1) describe the nonlinear shallow water waves. Upper and lower bounds are derived for energy decay rate in every finite interval [0, T] which reveals that only the lower bound of the energy decays exponentially.
引用
收藏
页码:83 / 87
页数:5
相关论文
共 5 条
[1]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[2]   A new integrable equation with peakon solutions [J].
Degasperis, A ;
Holm, DD ;
Hone, ANW .
THEORETICAL AND MATHEMATICAL PHYSICS, 2002, 133 (02) :1463-1474
[3]  
Gaeta G., 1999, SYMMETRY PERTURBATIO, P23
[4]   Traveling wave solutions of the Camassa-Holm equation [J].
Lenells, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 217 (02) :393-430
[5]   Traveling wave solutions of the Degasperis-Procesi equation [J].
Lenells, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 306 (01) :72-82