SEARCHING FOR PRIMITIVE ROOTS IN FINITE-FIELDS

被引:77
作者
SHOUP, V
机构
关键词
D O I
10.2307/2153041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let GF(p(n)) be the finite field with p(n) elements, where p is prime. We consider the problem of how to deterministically generate in polynomial time a subset of GF(p(n)) that contains a primitive root, i.e., an element that generates the multiplicative group of nonzero elements in GF(p(n)). We present three results. First, we present a solution to this problem for the case where p is small, i.e., p = n(O)(1). Second, we present a solution to this problem under the assumption of the Extended Riemann Hypothesis (ERH) for the case where p is large and n = 2. Third, we give a quantitative improvement of a theorem of Wang on the least primitive root for GF(p), assuming the ERH.
引用
收藏
页码:369 / 380
页数:12
相关论文
共 33 条
[11]  
EVDOKIMOV SA, 1989, ZAP NAUCHN SEM LENIN, V176, P104
[12]   PRIMITIVE ROOTS IN FINITE FIELDS [J].
FRIEDLANDER, JB .
MATHEMATIKA, 1972, 19 (37) :112-+
[13]   FACTORING POLYNOMIALS AND PRIMITIVE ELEMENTS FOR SPECIAL PRIMES [J].
GATHEN, JV .
THEORETICAL COMPUTER SCIENCE, 1987, 52 (1-2) :77-89
[14]  
HARDY GH, 1984, INTRO THEORY NUMBERS
[15]   CHARACTER SUMS AND PRIMITIVE ROOTS IN ALGEBRAIC NUMBER-FIELDS [J].
HINZ, JG .
MONATSHEFTE FUR MATHEMATIK, 1983, 95 (04) :275-286
[16]  
HUANG MA, 1985, 17TH P ANN ACM S THE, P121
[17]  
IWANIEC H., 1971, ACTA ARITH, V19, P1
[18]  
Iwaniec H., 1978, DEMONSTRATIO MATH, V11, P225
[19]   BOUND FOR THE LEAST PRIME IDEAL IN THE CHEBOTAREV DENSITY THEOREM [J].
LAGARIAS, JC ;
MONTGOMERY, HL ;
ODLYZKO, AM .
INVENTIONES MATHEMATICAE, 1979, 54 (03) :271-296
[20]  
LENSTRA HW, 1991, MATH COMPUT, V56, P329, DOI 10.1090/S0025-5718-1991-1052099-2