SEARCHING FOR PRIMITIVE ROOTS IN FINITE-FIELDS

被引:77
作者
SHOUP, V
机构
关键词
D O I
10.2307/2153041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let GF(p(n)) be the finite field with p(n) elements, where p is prime. We consider the problem of how to deterministically generate in polynomial time a subset of GF(p(n)) that contains a primitive root, i.e., an element that generates the multiplicative group of nonzero elements in GF(p(n)). We present three results. First, we present a solution to this problem for the case where p is small, i.e., p = n(O)(1). Second, we present a solution to this problem under the assumption of the Extended Riemann Hypothesis (ERH) for the case where p is large and n = 2. Third, we give a quantitative improvement of a theorem of Wang on the least primitive root for GF(p), assuming the ERH.
引用
收藏
页码:369 / 380
页数:12
相关论文
共 33 条
[1]  
ADLEMAN L, 1986, 18TH P ANN ACM S THE, P350
[2]   THE LEAST QUADRATIC NON RESIDUE [J].
ANKENY, NC .
ANNALS OF MATHEMATICS, 1952, 55 (01) :65-72
[3]  
BACH E, 1988, 799 U WISC DEP COMP
[4]  
Borevich ZI, 1966, NUMBER THEORY
[5]  
BURGESS DA, 1967, P LOND MATH SOC, V17, P11
[6]  
Carlitz L., 1953, Q J MATH OXF SER, V4, P4
[7]  
Cassels J., 1967, ALGEBRAIC NUMBER THE
[8]  
CHISTOV AL, 1984, 7TH ALL UN C MATH LO, P196
[9]  
Davenport H., 1963, REND CIRC MATEM PALE, VXII, P129, DOI 10.1007/BF02843959
[10]  
Davenport H., 1937, Q J MATH, P308, DOI 10.1093/qmath/os-8.1.308