COEFFICIENTS OF 2ND-ORDER SPHERICAL HARMONIC EQUATIONS USING AUTOMATIC-GENERATION

被引:3
作者
INANC, F
机构
[1] Marmara University, Faculty of Engineering 81040 Fikirtepe, Istanbul
关键词
D O I
10.1016/0306-4549(92)90052-D
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The spherical harmonics approximation to the neutron transport equation suffers from the complexity of the resulting differential equations. This complexity, which may prohibit the implementation of the method, can be overcome with an automatic generation scheme. This work presents the recurrence relations for generating second order spherical harmonic differential equations in three dimensions for homogenous media.
引用
收藏
页码:39 / 50
页数:12
相关论文
共 11 条
[1]  
Fletcher J. K., 1986, Transport Theory and Statistical Physics, V15, P157, DOI 10.1080/00411458608210449
[2]   RECENT DEVELOPMENTS OF THE TRANSPORT-THEORY CODE MARC/PN [J].
FLETCHER, JK .
PROGRESS IN NUCLEAR ENERGY, 1986, 18 (1-2) :75-83
[4]   SOLUTION OF TIME-INDEPENDENT MULTIGROUP NEUTRON-TRANSPORT EQUATION USING SPHERICAL HARMONICS [J].
FLETCHER, JK .
ANNALS OF NUCLEAR ENERGY, 1977, 4 (9-10) :401-405
[5]   A MODULAR SPHERICAL-HARMONICS APPROACH TO THE NEUTRON-TRANSPORT EQUATION [J].
INANC, F ;
ROHACH, AF .
ANNALS OF NUCLEAR ENERGY, 1989, 16 (07) :327-335
[6]  
INANC F, 1989, THESIS IOWA STATE U
[7]  
KAPLAN S, 1967, NUCL SCI ENG, V28, P166
[8]   THE SPHERICAL-HARMONICS METHOD FOR THE MULTIGROUP TRANSPORT-EQUATION IN X-Y GEOMETRY [J].
KOBAYASHI, K ;
OIGAWA, H ;
YAMAGATA, H .
ANNALS OF NUCLEAR ENERGY, 1986, 13 (12) :663-678
[9]  
Lewis E, 1984, COMPUTATIONAL METHOD
[10]  
VLADIMIROV VS, 1963, MATH PROBLEMS ONE VE