A FAMILY OF METHODS FOR ABEL INTEGRAL-EQUATIONS OF THE 2ND KIND

被引:31
作者
BRUNNER, H
CRISCI, MR
RUSSO, E
VECCHIO, A
机构
[1] MEM UNIV NEWFOUNDLAND,DEPT MATH & STAT,ST JOHNS A1C 5S7,NEWFOUNDLAND,CANADA
[2] NAPLES UNIV,DIPARTIMENTO MATEMAT & APPLICAZ,I-80134 NAPLES,ITALY
[3] CNR,IST APPLICAZ MATEMAT,I-80131 NAPLES,ITALY
关键词
ABEL INTEGRAL EQUATIONS; STABILITY; COLLOCATION METHODS;
D O I
10.1016/0377-0427(91)90043-J
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A class of methods depending on some parameters are introduced for the numerical solution of the Abel integral equations of the second kind. Some bounds on the parameters are determined so that the corresponding methods have infinite stability intervals.
引用
收藏
页码:211 / 219
页数:9
相关论文
共 9 条
[1]   STABILITY ANALYSIS OF PRODUCT THETA-METHODS FOR ABEL INTEGRAL-EQUATIONS OF THE 2ND KIND [J].
BAKKE, VL ;
JACKIEWICZ, Z .
NUMERISCHE MATHEMATIK, 1986, 48 (02) :127-136
[2]  
BRUNNER H, 1986, CWI MONOGRAPHS, V3
[3]   PRODUCT INTEGRATION METHODS FOR 2ND-KIND ABEL INTEGRAL-EQUATIONS [J].
CAMERON, RF ;
MCKEE, S .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1984, 11 (01) :1-10
[4]  
EGGERMONT PPB, 1981, J INTEGRAL EQUAT, V3, P317
[5]  
EGGERMONT PPB, 1989, MATH COMPUT, V53, P157, DOI 10.1090/S0025-5718-1989-0969485-X
[6]  
EGGERMONT PPB, 1988, NUMER MATH, V52, P65, DOI 10.1007/BF01401022
[7]  
KERSHAW D, 1982, TREATMENT INTEGRAL E, P459
[8]   A STABILITY ANALYSIS OF CONVOLUTION QUADRATURES FOR ABEL-VOLTERRA INTEGRAL-EQUATIONS [J].
LUBICH, C .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1986, 6 (01) :87-101
[9]  
LUBICH C, 1985, MATH COMPUT, V52, P65