Gesture Recognition Using mm-Wave Sensor for Human-Car Interface

被引:95
作者
Smith, Karly A. [1 ]
Csech, Clement [2 ]
Murdoch, David [3 ]
Shaker, George [3 ,4 ]
机构
[1] Univ Waterloo, Dept Syst Design Engn, Waterloo, ON N2L 3G1, Canada
[2] Univ Technol Compiegne, Dept Biomech & Bioengn, F-60200 Compiegne, France
[3] Univ Waterloo, Dept Elect & Comp Engn, Waterloo, ON N2L 3G1, Canada
[4] Univ Waterloo, Dept Mech & Mechatron Engn, Waterloo, ON N2L 301, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Microwave/millimeter wave sensors; human-car interface; 60 GHz mm-wave radar; gesture sensing; random forest classifier; machine learning;
D O I
10.1109/LSENS.2018.2810093
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article details the development of a gesture recognition technique using a mm-wave radar sensor for in-car infotainment control. Gesture recognition is becoming a more prominent form of human-computer interaction and can be used in the automotive industry to provide a safe and intuitive control interface that will limit driver distraction. We use a 60 GHz mm-wave radar sensor to detect precise features of fine motion. Specific gesture features are extracted and used to build a machine learning engine that can perform real-time gesture recognition. This article discusses the user requirements and in-car environmental constraints that influenced design decisions. Accuracy results of the technique are presented, and recommendations for further research and improvements are made.
引用
收藏
页数:4
相关论文
共 43 条
[31]   Broadband high gain performance MIMO antenna array for 5 G mm-wave applications-based gain prediction using machine learning approach [J].
Haque, Md. Ashraful ;
Ahammed, Md Sharif ;
Ananta, Redwan A. ;
Aljaloud, Khaled ;
Jizat, Noorlindawaty Md ;
Abdulkawi, Wazie M. ;
Nahin, Kamal Hossain ;
Al-Bawri, Samir Salem .
ALEXANDRIA ENGINEERING JOURNAL, 2024, 104 :665-679
[32]   Artificial Intelligence-Enabled Gesture-Language-Recognition Feedback System Using Strain-Sensor-Arrays-Based Smart Glove [J].
Lu, Wen-xiao ;
Fang, Ping ;
Zhu, Ming-lu ;
Zhu, Yi-run ;
Fan, Xin-jian ;
Zhu, Tian-chen ;
Zhou, Xuan ;
Wang, Feng-xia ;
Chen, Tao ;
Sun, Li-ning .
ADVANCED INTELLIGENT SYSTEMS, 2023, 5 (08)
[33]   Inertial sensor based human behavior recognition in modal testing using machine learning approach [J].
Bin Zahid, Fahad ;
Ong, Zhi Chao ;
Khoo, Shin Yee ;
Salleh, Mohd Fairuz Mohd .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (11)
[34]   Using Graphs to Perform Effective Sensor-Based Human Activity Recognition in Smart Homes [J].
Srivatsa, P. ;
Ploetz, Thomas .
SENSORS, 2024, 24 (12)
[35]   Human Activity Recognition in a Free-Living Environment Using an Ear-Worn Motion Sensor [J].
Boborzi, Lukas ;
Decker, Julian ;
Rezaei, Razieh ;
Schniepp, Roman ;
Wuehr, Max .
SENSORS, 2024, 24 (09)
[36]   Enhanced Human Activity Recognition Based on Smartphone Sensor Data Using Hybrid Feature Selection Model [J].
Ahmed, Nadeem ;
Rafiq, Jahir Ibna ;
Islam, Md Rashedul .
SENSORS, 2020, 20 (01)
[37]   Improved Human Activity Recognition Using Majority Combining of Reduced-Complexity Sensor Branch Classifiers [J].
Webber, Julian ;
Mehbodniya, Abolfazl ;
Arafa, Ahmed ;
Alwakeel, Ahmed .
ELECTRONICS, 2022, 11 (03)
[38]   A Convolutional Neural Network for Human Motion Recognition and Classification Using a Millimeter-Wave Doppler Radar [J].
Arab, Homa ;
Ghaffari, Iman ;
Chioukh, Lydia ;
Tatu, Serioja Ovidiu ;
Dufour, Steven .
IEEE SENSORS JOURNAL, 2022, 22 (05) :4494-4502
[39]   Human emotion recognition from EEG-based brain–computer interface using machine learning: a comprehensive review [J].
Essam H. Houssein ;
Asmaa Hammad ;
Abdelmgeid A. Ali .
Neural Computing and Applications, 2022, 34 :12527-12557
[40]   Instance Based Human Physical Activity(HPA) Recognition Using Shimmer2 Wearable Sensor Data sets [J].
Doreswamy ;
Yogesh, K. M. .
2017 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2017, :995-999