METHODS FOR CALCULATING LP-MINIMUM NORM SOLUTIONS OF CONSISTENT LINEAR-SYSTEMS

被引:0
作者
DAX, A
机构
[1] Hydrological Service, Jerusalem
关键词
MINIMUM NORM SOLUTIONS; DUALITY RELATIONS; COMPUTATIONAL METHODS;
D O I
10.1007/BF02190061
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper describes, analyzes, and tests methods for solving l(p)-minimum norm problems of the form min parallel-to X parallel-to p(p)/p, s.t. Ax = b, where 1 < p < infinity and Ax = b is a consistent system of linear equations. The paper presents a primal Newton method for problems with p > 2 and a dual Newton method that is suitable when 1 < p < 2. Primal-dual methods are also introduced. Numerical experiments illustrate the usefulness of the proposed methods.
引用
收藏
页码:333 / 354
页数:22
相关论文
共 26 条
[1]  
[Anonymous], 1980, PRACTICAL METHODS OP
[2]  
BARRODALE I, 1970, APPL MATH PROGRAMMIN, P447
[3]   ALGORITHM FOR MINIMUM-EFFORT PROBLEM [J].
CADZOW, JA .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1971, AC16 (01) :60-&
[4]   FINITE ALGORITHM FOR MINIMUM INFINITY SOLUTION TO A SYSTEM OF CONSISTENT LINEAR EQUATIONS [J].
CADZOW, JA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (04) :607-617
[5]  
DANIELS RW, 1978, INTRO NUMERICAL METH
[6]   ON MINIMUM NORM SOLUTIONS [J].
DAX, A .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1993, 76 (01) :183-193
[7]  
EKBLOM H, 1973, CALCULATION LINEAR B, V13, P292
[8]  
FISCHER J, 1981, NUMER MATH, V38, P129, DOI 10.1007/BF01395812
[9]  
Fletcher R., 1971, COMPUT J, V14, P226
[10]  
Gill P. E., PRACTICAL OPTIMIZATI