THE DIRICHLET PROBLEM FOR VARIABLE EXPONENT SMIRNOV CLASS HARMONIC FUNCTIONS IN DOUBLY-CONNECTED DOMAINS

被引:0
作者
Khuskivadze, G. [1 ]
Kokilashvili, V. [1 ]
Paatashvili, V. [1 ]
机构
[1] I Javakhishvili Tbilisi State Univ, Andrea Razmadze Math Inst, 2 Univ Str, Tbilisi 0186, Georgia
来源
MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS | 2011年 / 52卷
关键词
Hardy and Smirnov classes; variable exponent; Cauchy type integral; harmonic functions; Dirichlet problem; doubly-connected domain; piecewise smooth boundary;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present work we consider the Dirichlet problem in a doubly-connected domain D with an arbitrary piecewise smooth boundary F in a class of those harmonic functions which are real parts of analytic in D functions of Smirnov class E-P1(t),E-P2(t)(D) with variable exponents p(1) (t) and p(2) (t). It is shown that depending on the geometry of Gamma and the functions p(i), i = 1, 2, the problem may turn out to be uniquely and non-uniquely solvable or, generally speaking, unsolvable at all. In the latter case we have found additional (necessary and sufficient) conditions for the given on the boundary functions ensuring the existence of a solution. In all cases, where solutions do exist, they are constructed in quadratures.
引用
收藏
页码:131 / 156
页数:26
相关论文
共 22 条
[1]  
Bojarski B, 1968, SINGULAR INTEGRAL EQ
[2]  
Danilyuk I.I., 1975, NONREGULAR BOUNDARY
[3]  
Diening L, 2003, J REINE ANGEW MATH, V563, P197
[4]  
Duren Peter L., 1970, PURE APPL MATH, V38
[5]  
Goluzin G. M., 1966, GEOMETRICAL THEORY F, VSecond
[6]  
Havinson S. I., 1960 ISSLEDOVANIYA S, P45
[7]  
Karlovich A. Yu, 2003, J INTEGRAL EQUAT, V15, P263, DOI 10.1216/jiea/1181074970
[8]  
Khuskivadze G., 2007, P A RAZMADZE MATH I, V144, P41
[9]  
Khuskivadze G., 1998, MEM DIFFER EQU MATH, V14, P1
[10]  
KHVEDELIDZE BV, 1956, T TBILISS MAT I RAZM, V23, P3