EVALUATION OF MOLECULAR MULTICENTER INTEGRALS FOR SLATER-TYPE ORBITALS

被引:6
作者
TAI, H [1 ]
机构
[1] GEORGIA INST TECHNOL,SCH PHYS,ATLANTA,GA 30332
关键词
D O I
10.1088/0022-3700/12/2/009
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
An integral transform technique is suggested to evaluate the multicentre molecular integrals for Slater-type orbitals. For example, the two-electron-four-centre integral can be cast into a simple numerical integration over a three-dimensional space. The integrand contains a finite sum of spherical harmonics and spherical Bessel functions of order L whose arguments contain the complicated angular dependence of the geometry of the centres: L<or= Sigma ili,li being the angular quantum number of each individual orbital. A few examples are given.
引用
收藏
页码:177 / 185
页数:9
相关论文
共 10 条
[1]   THE EVALUATION OF INTEGRALS OCCURRING IN THE THEORY OF MOLECULAR STRUCTURE .1.2. [J].
BARNETT, MP ;
COULSON, CA .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1951, 243 (864) :221-249
[2]  
BARNETT MP, 1963, METHODS COMPUTATIONA, V2, P95
[3]   ON CALCULATION OF MULTICENTER 2-ELECTRON REPULSION INTEGRALS INVOLVING SLATER FUNCTIONS [J].
BONHAM, RA ;
COX, HL ;
PEACHER, JL .
JOURNAL OF CHEMICAL PHYSICS, 1964, 40 (10) :3083-&
[5]  
Harris FE, 1967, ADV CHEM PHYS, V13, P205
[6]   EVALUATION OF 2-CENTER INTEGRALS [J].
PROSSER, FP ;
BLANCHARD, CH .
JOURNAL OF CHEMICAL PHYSICS, 1962, 36 (04) :1112-&
[7]   A STUDY OF 2-CENTER INTEGRALS USEFUL IN CALCULATIONS ON MOLECULAR STRUCTURE .1. [J].
ROOTHAAN, CCJ .
JOURNAL OF CHEMICAL PHYSICS, 1951, 19 (12) :1445-1458
[8]   NOTE ON EXCHANGE INTEGRALS IN IMPACT-PARAMETER TREATMENT OF HEAVY-PARTICLE COLLISIONS [J].
SHAKESHAFT, R .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1975, 8 (08) :L134-L136
[9]   GAUSSIAN-TRANSFORM METHOD FOR MOLECULAR INTEGRALS .I. FORMULATION FOR ENERGY INTEGRALS [J].
SHAVITT, I ;
KARPLUS, M .
JOURNAL OF CHEMICAL PHYSICS, 1965, 43 (02) :398-&
[10]  
SHAVITT I, 1963, METHODS COMPUTATIONA, V2, P1