Anomalously low-field signals in H-1 NMR spectra of serine proteases provide valuable information on the protonation state of the catalytic histidine residue. We have examined the pH dependence of the deshielded protons of three different oxidation states of selenosubtilisin, a semisynthetic selenoenzyme with significant peroxidase activity, in order to evaluate the influence of the selenium prosthetic group on the hydrogen-bonding network in the modified active site. In the spectra of the anionic seleninate and selenolate derivatives, two resonances were observed at 18.0 and 15.5/14.0 ppm, assigned respectively to the Ndelta1 and Nepsilon2 protons of protonated His64. These signals were apparent from pH 4 to above pH 10, indicating that the negatively charged prosthetic group increases the stability of the imidazolium dramatically, raising its pK(a) by at least 3-4 pH units. In contrast, a neutral selenenyl sulfide species exhibits no deshielded proton signals at 18 ppm at any pH but has a weak signal at 14.1 ppm above pH 7 which was assigned to the Ndelta1 imidazole proton of neutral His64. While the pK(a) of His64 appears normal (approximately 7) in this derivative, the selenenyl sulfide substitution may alter the orientation of the imidazole ring within the active site for steric reasons. Together with data on the influence of pH on peroxidase activity, these results suggest that selenosubtilisin's His64 acts as a general acid facilitating the reduction of the selenenyl sulfide to selenolate by thiols.